UNIVERSITY OF SWAZILAND SECOND SEMESTER EXAMINATION, 2015/2016 TITLE OF PAPER **Advanced Analytical Chemistry** **COURSE NUMBEER:** C404 TIME ALLOWED Three (3) Hours INSTRUCTIONS Answer any FOUR (4) questions. Each question carries 25 marks. A periodic table and other useful data have been provided with this paper REQUIREMENT: **GRAPH PAPER** You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator. ### Question 1(25 marks) - (a) For the following two terms: cell constant, K, and equivalent conductance, Λ , for a conductivity cell - (i) Define each of them and state their S.I. Units [3] (ii) Derive a relationship between the two of them. [2] - (b) Account for the difference in the variation patterns of molar/equivalent conductances of strong and weak electrolytes with concentration. Show how this phenomenon is employed for the determination of Λ^0 , (Equivalent conductance at infinite dilution), for strong electrolytes while it is not applicable in the case of weak electrolytes. [6] - (c) Given the Table below: | Conc ⁿ : | Λ(S cm | ² mol ⁻¹) | |---------------------|--------|----------------------------------| | (Equiv/L) | HCl | NaCl | | 0.0005 | 422.74 | 124.50 | | 0.001 | 421.36 | 123.74 | | 0.005 | 415.80 | 120.65 | | 0.010 | 412.00 | 118.51 | | 0.020 | 407.24 | 115.76 | | 0.050 | 399.09 | 116.06 | | 0.100 | 391.32 | 106.74 | - (i) Comment on the general variation of Λ with concentration [1] - (ii) For which of these salt solutions does Λ vary more rapidly and why? [2] - (iii) If conductivity data of aqueous solutions of ½CaCl₂ and ½CaSO₄ of some concentrations were included in the above data, arrange the two salts in decreasing order of rapidity of variation of Λ with concentration [1] - (d) A given solution of acetic acid has a concentration of 2.414x 10⁻³ M and molar conductance of 32.22 S cm² mol⁻¹. Calculate: - (i) The degree of dissociation of acetic acid at this concentration. - (ii) The ionization constant, K_i. [10] $$(\lambda_{H}^{0} = 349.6 \text{ S cm}^{2} \text{ mol}^{-1}; \lambda_{OAC}^{0} = 40.9 \text{ S cm}^{2} \text{ mol}^{-1})$$ #### Question 2 (25 marks) - (a) In carrying out a conductometric titration, what are the necessary precautionary steps that need to be taken in order to maximize accuracy of data? [3] - (b) Give three advantages of conductometric titration and explain why measurements near equivalent points are not necessary. [4] - (c) Sketch the general form of the titration curve for the following conductometric titrations indicating the equivalent points. - (i) Titration of HCl with 1.0 M KOH - (ii) Titration of HCl with 1.0 NH₄OH Briefly explain the difference in the shapes of the two curves. [6] (d) The following relative conductance readings, corrected for titrant volume, were obtained when a100.00mL solution of acetic acid was titrated with 1.0M solution of NaOH. | Buret
Reading:(mL) | 0.20 | 0.60 | 1.00 | 1.21 | 1.40 | 2.00 | 2.20 | 2.40 | 2.60 | 3.00 | |-----------------------|------|------|------|------|------|------|------|------|------|------| | Λ:
(Scm² mol -1) | 0.23 | 0.56 | 0.92 | 1.10 | 1.28 | 2.21 | 2.71 | 3.21 | 3.70 | 4.70 | Determine the concentration of the acid. [12] $$(\lambda_{H^+}^0 = 349.6; \lambda_{Cl}^0 = 76.4; \lambda_K^0 = 73.5; \lambda_{OH}^0 = 198.6; \lambda_{NH4}^0 = 73.3, \text{S cm}^2 \text{mol}^{-1})$$ ### Question 3 (25 marks) - (a) What are the main properties of an ideal reference electrode? [4] - (b) (i) Describe the constructions of simple bottle-type saturated calomel electrode. Give the half-cell line notation and the reaction for the SCE. [6] - (ii) Given a saturated calomel electrode and a 0.1M calomel Electrode, - Which would you prefer for analysis and why? - Which has a higher cell potential at a given temperature? Justify your answer. [4] - (c) Sate the advantages and disadvantages of a Ag/AgCl electrode over saturated calomel electrode. [4] - (d) Given the following half reactions: $$Mg^{2+} + 2e^{-} = Mg_{(s)} : E^{0} = -2.36 \text{ V}$$ $Mg(OH)_{2(s)} + 2e^{-} = Mg_{(s)} + 2OH^{-} : E^{0} = -2.69 \text{ V}$ Calculate: (i) ΔG^0 ## (ii) The solubility product, K_{sp} , of Mg(OH)_{2(s)}. (F = 96485 Coul/mol). [7] ### Question 4 (25 marks) - (a) What is an indicator electrode? Give the main features of an ideal indicator electrode. [2] - (b) For a metallic indicator electrode of the first kind, use a specific illustrative example to describe its: - (i) set up, (ii) operating principles, - (iii) cell potential E_{ind.}, (iv) variation of the E_{ind} with pX (where X is the activity of the ion being analyzed) [12] - (c) Explain why certain metals cannot be employed as electrodes of the first kind. Give two examples of such metals. [3] - (d) In preparing a cell, a copper wire and SCE were dipped into a 0.100 M CuSO₄ solution. The copper wire was connected to the positive terminal of a potentiometer while the SCE was connected to the negative terminal. - (i) Write the half-cell reaction for the Cu-electrode - (ii) Write the Nernst equation for the Cu-electrode. - (iii) Calculate the cell voltage. $$(Cu^{2+} + 2e^{-} = Cu_{(s)} : E^{0} = 0337 \text{ V})$$ [8] ### Question 5 (25 marks) - (a) Give five favourable features of ion selective electrodes (ISE). [5] - (b) State the specific type and class of ISE you would employ for the determination of the following ions in solutions: H⁺, K⁺, Na⁺ and Ca²⁺. [4] - (c) I.S.E's are designed to respond to the activity of a solution (and not to concentration). How would you plan your experiment so that the electrode would measure the concentrations of your solutions directly? [1] - (d) For the fluoride ISE. - (i) Draw a labeled schematic diagram. - (ii) Give an outline of its working principles (including establishment of potential difference across the membrane). (e) A Ca^{2+} I.S.E was employed for the determination of $[Ca^{2+}]$ in a water sample. A 10.00-ml sample was transferred to 100-ml volumetric flask and diluted to volume. A 50.00-ml aliquot of the latter sample was placed in a beaker containing a Ca^{2+} - ISE and S.C.E, and the measured potential was -0.05290V. When a 1.00-ml aliquot of 5.00×10^{-2} M standard Ca^{2+} solution was added, the potential changed to -0.04417V. Calculate the molar concentration of Ca^{2+} in the original water sample. [8] (Take $\beta = 1.00$) ### Question 6 (25 marks) - (a) (i) What are the usual functions of a supporting electrolyte during polarographic analysis of an ion? Give three examples. [5] - (ii) Why should the concentration of a supporting electrolyte be at least 1000 fold that of the analyte ion? [3] - (b) Enumerate the sources of residual current during linear scan polarography. [2] - (c) (i) Discuss briefly how current maxima and oxygen affect polarographic data. - (ii) What steps should be taken to minimize their effects during a polarograpic analysis. [8] - (d). The half-wave potential, $E_{1/2}$, for the uncomplexed reduction of a metal ion, M^{2+} on a DME in 0.1M NaClO₄ was -0.74 V. On being complexed with a ligand, L with concentration $C_L = 2.0 \times 10^{-4}$ M, the half-wave potential shifted to -0.930 V. If both polarograms are reversible and given that the metal -to- ligand ratio of the complex is unity, calculate K_f for the complex. ### PERIODIC TABLE OF ELEMENTS | ~ | * | \sim | • | TYN | ~ | |---|---|--------|---|-----|----| | C | ĸ | () | ı | 11' | `` | | | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | . 10 : | ~11 ~ | 12 | 13 | 14 | 15 | 16 | | 18 | |---------|--------------------|---------------------------|---------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------------------|--------------------|--------------------|--------------------|----------------------|--------------------|----------------------| | PERIODS | IA | 11A | IIIB | IVB | VB | VIB | VIIB | | VIIIB | . In | IB | IIB | IIIA | : IVA | VA. | VIA | VIIA | VIIIA | | 1 | 1.008
II
1 | | | | | | | | | | | | | | | | | 4.003
He
2 | | 2 | 6.941
Li
3 | 9.012
Bc
4 | | | | *, : | | , | | | Syn | c mass –
nbol –
ic No. – | | 12.011
C | 14.007
N
7 | 15,999
O
8 | 18.998
F
9 | 20.180
Ne
10 | | 3 | 22.990
Na
11 | 24.305
Mg
12 | | | | TRAN | SITION | ELEM | ENTS | | | | 26.982
Al
13 | 28.086
Si
14 | 30.974
P
15 | 32.06
S
16 | 35.453
(C1) | 39.948
Ar
18 | | 4 | 39.098
K
19 | 40.078
Ca
20 | 44.956
Sc
21 | 47.88
Ti
22 | 50.942
V
23 | 51.996
Cr
24 | 54.938
Mn
25 | 55.847
Fe
26 | 58.933
Co
27 | 58.69
Ni
28 | 63.546
Cu
29 | 65.39
Zn
30 | 69.723
Ga | 72.61
Ge
32 | 74,922
As | 78.96
Sc
34 | 79.904
Br
35 | 83,80
Kr
36 | | 5 | 85.468
Rb
37 | 87.62
Sr
38 | 88.906
Y
39 | 91.224
Zr
40 | 92.906
Nb
41 | 95.94
Mo
42 | 98.907
Tc
43 | 101.07
Ru
44 | 102.91
Rh
45 | 106.42
Pd
46 | 107.87
Ag
47 | 112.41
Cd
48 | 114.82
In
49 | 118.71
Sn
50 | 121,75
Sb
51 | 127.60
Te
52 : | 126.90
I
53 | 131.29
Xe 4
54 | | 6 | 132.91
Cs
55 | 137.33
Ba
56 | 138.91
*La
57 | 178.49
Hf
72 | 180.95
Ta
73 | 183.85
W.
74 | 186.21
Re
75 | 190.2
Os
76 | 192.22
Ir
77 | 195.08
Pt
78 | 196.97
Au
79 | 200,59
Hg
80 | 204.38
TI
81 | 207.2
Pb
82 | 208.98
Bi
83 | (209)
Po
84 | (210)
At
85 | (222)
Rn
86 | | 7 | 223
Fr | 226.03
Ra | (227)
**Ac | (261)
Rf | (262)
Ha • | (263)
Unh | (262)
Uns | (265)
Uno | (266)
Une | (267)
Uun | | | | | | | | | *Lanthanide Series **Actinide Series | | | | | | * ** | | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | |--------|--------|--------|--------|--------|----------|-------|--------|--------|---------------------------------------|--------|--------|--------|--------| | 140.12 | 140.91 | 144.24 | (145) | 150.36 | 151.96 1 | 57.25 | 158.93 | 162.50 | 164,93 | 167.26 | 168.93 | 173.04 | 174.97 | | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | | Yb | Lu | | 58 | 59 | 60 | 61 | 62 | | | | 66 | | | 69 | /,70 | 71. | | 232.04 | 231.04 | 238.03 | 237.05 | (244) | (243) (| (247) | (247) | (251) | (252) | (257) | (258) | (259) | (260) | | Th | Pa | U: | Np. | Pu | Am | Cm. | Bk | Cf. | Es | | | No | Lr | | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | | L | | | | L | , l., | | ابيان | L | <u> </u> | | | | | () indicates the mass number of the isotope with the longest half-life, | | ing selection of the se | | | |--|--|--|--| | All Company of the Co | r og forskinger film familie
Grander
Officer familie | | | | a garage and the second se | | ang kang di kanggapan ng panggapan na kanggapan na kanggapan na kanggapan na kanggapan na kanggapan na kanggap
Kanggapan na kanggapan kangga | and the second of o | | Cuantity | Symbol | Value | General data and | | Speed of light | C | 2.997 924 58 × 10 ⁵ m s ⁻¹ | fundamental | | - Elementary | | 1.602177 × 10 12 C | constants | | charge
Faraday | F = eN _x | O BACE LINE IN THE STATE OF | | | constant | . • 7 511 2 | 9.5485 x 10 ² C mol ⁻¹ | | | Ecitzmann | · k | 1.380 65 × 10 ⁻²² J K ⁻¹ | | | constant Gas constant | 2 - LAI | D De a ma i (em) | | | constant | $n = KIY_A$ | 8.31451 J K=1 mol=1 | | | | | 3.205 78 × 10 ⁻² dm² atm K ⁻¹ mel ⁻¹ | | | | | 62.364 L Torr K ⁻¹ mol ⁻¹ | 1960年2月1日 (1961年) (196 1年) (1961年) | | Planck constant | h | 6.526 08 × 10 ⁻³⁴ J s | | | | h = h/2 = | 1.054 57 × 10 ⁻²⁴ J s | | | Avogadro
constant | N _A | 6.022 14 × 10 ²² mol ⁻¹ | | | Atomic mass | u . | 1.560 54 × 10 ⁻¹⁷ kg | | | unit
Mass of | · · · · · · · · · · · · · · · · · · · | | | | Mass of electron | m_{ullet} | 9.109 39 × 10 ⁻³¹ kg | and the second of o | | proton | . O ₂ | 1.572.62 × 10 ⁻²⁷ kg | | | neutron - | m=- | 7:1.574 93 × 10 ⁻²⁷ kg | | | Vacuum | μ ₂ | $4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | permeability† | | $4\pi \times 10^{-7} \text{T}^2 \text{J}^{-1} \text{m}^2$ | | | Vacuum | $\varepsilon_2 = 1/c^2 \mu_2 \qquad .$ | 8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁺¹ | | | permittivity | 4πε ₀ | 1.112.65 × 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹ | • | | Bohr magneton | μ ₂ = eħ/2m ₄ | 9.274.02 × 10 ⁻²⁴ J T-1 | 1.5 | | Nuclear
magneton | μ _H = eπ/2m ₃ | 5.050 79 × 10 ⁻²⁷ J T ⁻¹ | | | Electron g
value | g. | ~2.002 32. | | | Value
Bonr radius | $z_2 = 4\pi \epsilon_0 \hat{n}^2/m_e \epsilon$ | 5.291 77 × 10 ⁻¹⁷ m | • | | Rydberg | $R_{-} = 4\pi \epsilon_{0} n^{-} / m_{1} \epsilon$ $R_{-} = m_{1} \epsilon^{4} / 8 h^{3} c$ | 5.291 77 × 10 ⁻¹¹ m
1.097 37 × 10 ⁵ cm ⁻¹ | • | | constant | • | • | | | Fine structure constant | $c = \mu_0 e^2 c/2h$ | 7.29735×10^{-3} | | | Gravitational constant | G | 6.672 59 × 10 ⁻¹¹ N m ² kg ⁻² | | | Standard 1 | g | 9.206.65.m s_2 | • | | acceleration of free fall† | | ر سیست سیست استان استا
استان استان است | • | | or mee fell? | | | . † Exact (defined) values - | | f d | | | n_ = | | | n μ ms | c d k M G | Prefixes | | | nano micro milli | centi deci kilo mega giga | • | | 10-15 10-12 | 10-9 10-5 10-3 | 10-2 10-1 103 106 103 | Section of the sectio | | | • | . • | | | , | | | | | | - | | • | | • | | | • | APPENDIX C. POTENTIALS OF SELECTED HALF-REACTIONS AT 25 °C A summary of exidation/reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems. | Half-reaction | | £° (V) | |--|---|-------------| | F ₂ (g) + 2H + 2e | = 2HF ∴ | 3.06 | | O ₃ + 2H ⁺ + 2e | $= O_2 + H_2O$ | 2.07 | | | $= 2SO_{4}^{2}$ | 2.01 | | | = Ag ⁺ | 2.00 | | H ₂ O ₂ + 2H ⁺ + 2e ⁻ | = 2H ₂ O | 1.77 | | MnO ₄ + 4H ⁺ + 3e ⁻ | = $MnO_2(s) + 2H_2O$ | 1.70 | | Ce(IV) + e" | = Ce(III) (in 1M HClO ₄) | 1.61 | | H ₅ 10 ₆ + H ⁺ + 2e ⁻ | $= 10^{\circ}_{1} + 3H_{2}O$ | 1.6 | | Bi_2O_4 (bismuthate) + $4H^+ + 2e^-$ | $= 2BiO^+ + 2H_2O$ | 1.59 | | BrO3 + 6H+ + 5e- | $=\frac{1}{2}Br_2 + 3H_2O$ | 1.52 | | $MnO_4^{-} + 8H^+ + 5e^-$ | $= Mn^{2+} + 4H_2O$ | 1.51 | | PbO2 + 4H+ + 2e- | $= Pb^{2+} + 2H_2O$ | 1.455 | | Ch, + 2e | = 2Cl7 | 1.36 | | $Cr_2O_7^2 + 14H^4 + 6e^-$ | $= 2Cr^{3+} + 7H_2O$ | 1.33 | | $MnO_2(s) + 4H^4 + 2e^{-\frac{1}{2}}$ | $= Mn^{2+} + 2H_2O$ | 1.23 | | $O_2(g) + 4H^+ + 4e^-$ | $= 2H_2O$ | 1.229 | | IO ₃ + 6H ⁺ + 5e ⁻ | $=\frac{1}{2}I_2 + 3H_2O$ | 1.20 | | $Br_2(l) + 2e^-$ | = 2Br | 1.065 | | $ICl_2^- + e^-$ | $=\frac{1}{2}I_2 + 2CI^-$ | 1.06 | | $VO_{2}^{+} + 2H^{+} + e^{-}$ | $= VO^{2+} + H_2O$ | 1.00 | | $HNO_2 + H^+ + e^-$ | $= NO(g) + H_2O$ | 1.00 | | $NO_3^- + 3H^+ + 2e^-$ | $= HNO_2 + H_2O$ | 0.94 | | $2Hg^{2+} + 2e^{-}$ | $= Hg_2^{2+}$ | 0.92 | | $Cu^{2+} + I^{-} + e^{-}$ | = CuI(s) | 0.86 | | Ag+ + e- | = Ag | 0.799 | | $Hg_z^{2+} + 2e^-$ | = 2Hg | 0.79 | | $Fe^{3+}+e^{-}$ | $= Fe^{2+}$ | 0.771 | | $O_2(g) + 2H^+ + 2e^-$ | $= H_2O_2$ | 0.682 | | $2HgCl_2 + 2e^-$ | = Hg2Cl2(s) + 2CI- | 0.63 | | $Hg_2SO_4(s) + 2e^-$ | $= 2Hg + SO_4^{2}$ | 0.615 | | Sb ₂ O ₅ + 6H ⁺ + 4e ⁻ | $= 2SbO^+ + 3H_2O$ | 0.581 | | $H_3AsO_4 + 2H^+ + 2e^-$ | $= HAsO_2 + 2H_2O$ | 0.559 | | $I_3^- + 2e^-$ | = 31 - | 0.545 | | $Cu^+ + e^-$ | = Cu | 0.52 | | $VO^{2+} + 2H^+ + e^-$ | $= V^{3+} + H_2O$ | 0.337 | | $Fe(CN)_6^{3-} + e^-$ | $= \operatorname{Fe}(\operatorname{CN})_6^{1-}$ | 0.36 | | $Cu^{2+} + 2e^{-}$ | = Cu | 0.337 | | $UO_2^{2+} + 4H^{+} + 2e^{-}$ | $= U^{4+} + 2H_2O$ | 0.334 | | • | • | (continued) | | APPENDIX C (continu | |---------------------| |---------------------| | | | APPENDIX C (continued | Professional Control State | 1967 (1)
12 47 (1) | |---------------------------------------|-------|------------------------------------|----------------------------|-----------------------| | my or sign | | Half-reaction | | <i>E</i> ° (V) | | | | $Hg_2Cl_2(s) + 2e^-$ | = 2Hg + 2Cl ⁺ | 0.2676 | | | | $BiO^+ + 2H^+ + 3e^-$ | $= Bi + H_2O$ | 0.32 | | | | AgCI(s) + e ⁻ | $= Ag + Cl^{+}$ | 0.2222 | | : | ٠٠ | $SbO^{+} + 2H^{+} + 3e^{-}$ | $= Sb + H_2O$ | 0.212 | | ٠., | .* | $CuCl_3^{2-} + e^-$ | = Cu + 3Cl | 0.178 | | | | $SO_4^{2-} + 4H^+ + 2e^-$ | $= SO_2(a\bar{q}) + 2H_2O$ | 0.17 | | '• | | Sn*+ + 2e- | $= Sn^{2+}$ | 0.15 | | | | $S + 2H^+ + 2e^-$ | $= H_2S(g)$ | 0.14 | | · . · | | TiO2+ + 2H+ + e- | $= Ti^{3+} + H_2O$ | 0.10 | | | | $S_4O_6^{2-} + 2e^{-}$ | $= 2S_2O_3^2$ | 0.08 | | | • • • | $AgBr(s) + e^{-}$ | $= Ag + Br^{-}$ | 0.071 | | | | $2H^+ + 2e^-$ | $= H_2$ | 0.0000 | | • | 1.50 | $Pb^{2+} + 2e^{-}$ | = Pb | -0.126 | | | | $Sn^{2+} + 2e^{-}$ | = Sn | -0.136 | | ·, . | • | $AgI(s) + e^{-}$ | $= Ag + I^{-}$ | -0.152 | | • | * | $Mo^{3+} + 3e^{-}$ | | pprox0.2 | | · · · · · · · · · · · · · · · · · · · | | $N_2 + 5H^+ + 4e^-$ | $= H_2NNH_3^+$ | -0.23 | | ; ··· | - | $Ni^{2+} + 2e^{-}$ | = Ni | -0.246 | | | • | $V^{3+} + e^{-}$ | $= V^{2+}$ | -0.255 | | | | $Co^{2+} + 2e^{-}$ | = Co | -0.277 | | | | Ag(CN)= + e- | $= Ag + 2CN^{-}$ | -0.31 | | | | $Cd^{2+} + 2e^{-}$ | = Cđ | -0.403 | | | | $Cr^{3+} + e^{-}$ | = Cr²÷ | -0.41 | | | | $Fe^{2+} + 2e^{-}$ | = Fc | -0.440 | | | | $2CO_2 + 2H^+ + 2e^-$ | $= H_2C_2O_4$ | -0.49 | | | | $H_3PO_3 + 2H^+ + 2e^-$ | $= HPH_2O_2 + H_2O$ | -0_50 | | | | $U^{4+} + e^-$ | = U ₂₊ | -0.61 | | | | $Zn^{2+} + 2e^-$ | = Zn | 0.763 | | .: | | $Cr^{2+} + 2e^{-}$ | = Cr | -0.91 | | | | $Mn^{2+} + 2e^{-}$ | = Mn | -1.18 | | | | Zr4+ + 4e- | = Zr | -1.53 | | • | | $Ti^{3+} + 3e^{-}$ | : = Ti | -1.63 | | • | | $Al^{3+} + 3e^{-}$ | = Al | -1.66 | | | | $Th^{4+} + 4e^{-}$ | = Th | -1.90 | | | , | $Mg^{2+} + 2e^{-}$ | = Mg | -2.37 | | | | La ³⁺ + 3e ⁻ | = La | -2.52 | | • | | $Na^+ + e^-$ | = Na | -2.714 | | | 4 | $Ca^{2+} + 2e^{-}$ | = Ca | -2.87 | | | | $Sr^{2+} + 2e^{-}$ | = Sr | -2.89 | | | | K+ + e- | = K | -2.925 | | | | Li ⁺ + e ⁻ | = Li | -3.045 | | | | | | |