DEPARTMENT OF CHEMISTRY

UNIVERSITY OF SWAZILAND

NOVEMBER 2014 FINAL EXAMINATION

TITLE OF PAPER

: Analytical Chemistry II: Fundamentals of

Spectrophotometry

COURSE NUMBER

C304

TIME

3 HOURS

Important Information

: 1. Each question is worth 25 marks.

2. Answer questions one (1) and any other three (3)

questions in this paper.

3. Marks for **ALL** procedural calculations will be awarded.

4. Start each question on a fresh page of the answer sheet.

5. Diagrams must be large and clearly labelled accordingly.

6. This paper contains an appendix of chemical constants

7. Additional material: graph paper and data sheet

You are not supposed to open this paper until permission has been granted by the chief invigilator

QUESTION 1 [25] [COMPULSORY QUESTION]

- a) Differentiate between "Spectroscopy" and "Spectrometry" [4]
- b) Several analytical techniques are based on the absorption of energy from different parts of the electromagnetic spectrum.

The following diagram shows part of the electromagnetic spectrum;

X-Rays	Р	Visible	Q	Microwaves

- i) Identify the types of radiation labelled P and Q [2]
- ii) Identify which one of the five regions has radiation of lowest frequency [2]
- c) Explain how and why molecular and atomic spectra are different. In other words, describe the differences in the spectra you record and then explain physically what happens within the atoms/molecules to give these differences. Use diagrams to illustrate [5]
- d) This question relates to the following spectrum:

- For the largest peak in the spectrum, calculate the energy in Joules per photon.
 Estimate any quantities you need from the scale on the spectrum [4]
- ii) Calculate the frequency (in Hertz) for this same peak [2]
- iii) In what region of the electromagnetic spectrum (e.g. x-ray, gamma ray, ultra violet and micro-wave) does this peak fall? [2]
- e) Explain the different uses of atomic spectrometry in analytical chemistry? (Give 2) [4]

QUESTION 2 [25]

- a) Sketch out the main components in FES and AAS and highlight the main difference [4]
- b) Which group of elements can be determined by FES? Explain why the technique is limited to these elements [2]
- c) What is the role of the monochromator in AAS? [2]
- d) With an aid of a diagram describe how does a hollow cathode lamp works [5]
- e) An **internal standard** in analytical chemistry is a chemical substance that is added in a constant amount to samples, the blank and calibration standards in a chemical analysis. The method of internal standards is used to improve the precision of quantitative analysis.
 - i) Give two characteristics of a "good" internal standard. [2]
 - ii) In ICP-MS analysis, choose one internal standards; Bi, Sc or In for each of the following analytes; Cd, Pb and Cr and explain why you chose as you did? [4]
 - iii) Explain why an internal standard can be used for Inductively Coupled Plasma
 Emission ICP-AES but is not used for AAS [3]
- f) Give an example of chemical interference in AAS. Describe the fundamental problem and how you would solve it [3]

QUESTION 3 [25]

- a) Inductively Coupled Plasma (ICP) Emission Spectroscopy is the most widely used atomic spectroscopy today.
 - i) Draw the ICP torch and label its components [4]
 - ii) Use a diagram to explain why it is possible to measure up to 35 elements simultaneously using ICP. [4]
 - iii) Which torch position would you choose in ICP-AES when analysing antimony in purified samples where the limit of detection (LOD) is an issue? Explain. [3]
- b) Explain the following terms as used in UV-visible spectrometry and give examples
 - i) Chromophore
 - ii) Auxochrome
 - iii) Bathochromic Shift
 - iv) Hypochromic Effect [6]

- c) What is the electron capture detector? Explain its basis for operation, why is N₂ necessary? What types of species are detected with the ECD? [5]
- d) What do you understand by temperature programming in GC analysis? How does it help?[3]

QUESTION 4 [25]

- a) The Deuterium lamp is one of the radiation sources used in UV-visible spectroscopy. Using equations, explain how the lamp is able to produce a continuum radiation (160 380nm) [5]
- b) Consider the reactions of two unknown compounds X and Y.

$$X + 2H_2 \rightarrow C_5H_{12}$$
$$Y + 2H_2 \rightarrow C_5H_{12}$$

i) Deduce the molecular formula of the two unknown compounds [2]
 The UV spectra of the compounds are compared to pent-1-ene in the table below.

Compound	λ_{max}
X	176
Y	211
Pent-1-ene	178

- ii) Draw the structures of compounds X and Y and explain the choice of structure for each. [5]
- c) IR spectroscopy is a technique mostly used for qualitative analysis of organic compounds.
 - i) Explain the two criteria required for a molecule to absorb IR radiation. [4]
 - ii) Which of the molecules oxygen and hydrogen chloride is IR active and why? [2]
- d) Which type of GC detector is most commonly used? Explain its working principle and what are its limitations? [7]

QUESTION 5 [25]

- a) State Beer's Law as applied to spectroscopy, and explain all terms appearing in it. [3]
 - i) What is meant by "stray light" in spectroscopy? [1]
 - ii) Use equations to explain why stray light leads to negative deviations from Beer's Law [4]
- b) One very useful detector in atomic spectrometry is the Photomultiplier Tube. Draw and label the "PMT', explain how it works. [5]

c)	Nebulization is a very wasteful approach to atomization.	
	i) What does the term "nebulization" mean?	[1]
	ii) Use diagrams to explain how nebulization is carried out in atomic spectroscopy.	[4]
	iii) Use your answer in (c) ii above to explain why nebulization is considered inefficient	nt.
	[2]	
d)	What do you understand by column efficiency and how is it expressed? Explain all terms	
	appearing in the equation.	[5]
OUEST	ION 6 [25]	
QUESI	ION 6 [25]	
a)	With the aid of a diagram, briefly but informatively explain how the following detectors vin chromatography:	vork
	i) Thermal Conductivity Detector	[4]
	ii) Flame Ionization Detector	[4]
b)	Draw the main components of a GC. Explain the function of each function.	[5]
c)	What are the main differences between High Performance Liquid Chromatography and G	
	Chromatography?	[5]
d)	The two most common types of columns used in high performance liquid chromatograph (HPLC) are " C_8 " and " C_{18} " columns	ny
	i)Explain the difference(s) between a " C_8 " column and a " C_{18} " column ii) Explain why these two particular types of columns are used for "reverse phase" HPLC.	[2] [3]
e)	Explain why it is necessary to use a "guard column" in an HPLC but not in a GC.	[2]

Useful Relations	General Data		
(RT) _{298-15K} =2.4789 kJ/mol	speed of light	С	2.997 925x10 ⁸ m ⁻¹
(RT/F) _{298-15K} =0.025 693 V	cliarge of proton	e	1.602 19x10 ⁻¹⁹ C
T/K: 100.15 298.15 500.15 1000.15	Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69,61 207,22 347.62 695.13	Boltzmann constant	<u>i</u> k	1.380 66x10 ⁻²³ J K ⁻¹
lmmHg=133,222 N m ⁻²	Gas constant	R=Lk	8.314.41 J K ⁻¹ mol ⁻¹
hc/k=1.438 78x10 ⁻² m K			8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
latm I cal I eV I cm ⁻¹			
1.01325x10 ⁵ Nm ⁻² 4.184 J 1.602 189x10 ⁻¹⁹ J 0.124x10 ⁻³ eV	Planck constant	h	6.626 18x10 ⁻³⁴ Js
760torr 96,485 kJ/mol 1.9864x10 ²³ J 8065,5 cm ³		$h = \frac{h}{2\pi}$	1 054 59x10 ³⁴ Js
	Avogadro constant	L or N _{av}	6.022 [4x10 ²³ mol ⁻¹
	Atomis mass unit	u=10 ⁻³ kg/(Lmol)	1.660 54x10 ⁻²⁷ kg
	Electron mass	m _e	9 109 39x10 ⁻³¹ kg
SI-units:	Proton mass	$m_{ m p}$	1.672.62x10 ⁻²⁷ kg
l cal (thermochemical) = 4.184 J	Neutron mass	m _a	1.674 93x10 ⁻²⁷ kg
dipole moment: 1 Debye = 3.335 64x10 ⁻¹⁰ C m	Vacuum permittivity	$\varepsilon^n = \mu_{-1}^n c_{-3}$	8.854 188x10 ⁻¹² J ⁻¹ C ² m ⁻¹
force: $1N=1J \text{ m}^{-1} = 1 \text{kgms}^{-2} = 10^5 \text{ dyne}$ pressure: $1Pa=1N \text{m}^{-2} = 1J \text{m}^{-3}$	Vacuum permeability	μ	$4\pi \times 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
power: $IW = IJs^{-1}$ potential: $IV = IJC^{-1}$	Bohr magneton	$\mu_{\mu} = \frac{ch}{2m}$	9.274 02x10 ⁻²⁴ JT ⁻¹
magnetic flux; 1T=1Vsm ⁻² =1JCsm ⁻² current: 1A=1Cs ⁻¹	Nuclear magneton	$\mu_N = \frac{eh}{2m_p}$	5.05079x10 ⁻²⁷ JT ⁻¹
Prefixes:	Gravitational constant	G or g	6.67259x10 ⁻¹¹ Nm ² kg ⁻²
p n m m c d k M G	Bohr radius	a _o	5.291 77x10 ^{:11} m
pico nano micro milli centi deci kilo mega giga			
10^{-12} 10^{-2} 10^{-6} 10^{-3} 10^{-2} 10^{-1} 10^{3} 10^{6} 10^{9}	***************************************		

The control of the co

Periodic Table of the Elements

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1		·															2
1.0679																	He 4.0026
3	4											5	6	7	8	9	10
Li	Ве											В	C	N	0	F	Ne
6.941	9.0122											10.811	12.011	14.007	15.999	18.998	20.180
11	12	1										13	14.	15	16	17	18
Na	Mg											Al	Si	P	·s	CI	Ar
22.990	24.305											26.982	28.085	30.974	32.066	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078	44.956	47.88	50.942	5 1 .996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85,468	87.62	88.906	91.224	92.906	95.94	(98)	101.07	102.91	105.42	107.87	112.41	114.82	113.71	121.75	127.60	126.90	131.29
ა 5	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	8a	· La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	1.96.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	1.08	109	110	111							
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	,						
(223)	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)	(?)	(?)	j						

S						•								
nide	58	59	60	61	62	63	64	65	66	67	68	69	70	71
ıtha	Ce	Pr	Nd	Prn	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Ę.	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
es	90	91	92	93	94	95	96	97	98	99	100	101	102	103
ctinid	Th	Pa	U	Np	Pu -	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Ac	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

PHYSICAL CONSTANTS AND UNITS

•	Fable 1 : Ge	neral Physical Constants			
Constant	Symbol	SI Units	Non-SI Units		
Velocity of Light	с	2.9979 × 10 ⁸ m s ⁻¹			
Electronic charge	е	-1.6022 × 10 ⁻¹⁹ C			
Avogadro's constant	N _A	6.0220 × 10 ²³ mol ⁻¹			
Atomic mass unit	u	1.6606 × 10 ⁻²⁷ kg			
Electron rest mass	m _e	$9.1095 \times 10^{-31} \text{ kg}$			
Proton rest mass	m _p	1.6726 × 10 ⁻²⁷ kg			
Neutron rest mass	m _n	$1.6750 \times 10^{-27} \mathrm{kg}$			
Planck's constant	h	$6.6262 \times 10^{-34} \mathrm{J}\mathrm{s}$			
Rydberg constant	R _H	$1.0974 \times 10^7 \text{m}^{-1}$			
Ideal gas constant	R	8.314 J mol ⁻¹ K ⁻¹	0.08206 l atm mol ⁻¹ K ⁻¹		
Gas molar volume (STP)	V _o	$2.21414 \times 10^{-2} \text{ m}^3 \text{ mol}^{-1}$	22.4 l mol ⁻¹		
Boltzmann constant	k	1.3807 × 10 ⁻²³ J K ⁻¹			
Faraday constant	F	96485 C mol ⁻¹			
Gravitational acceleration	g	9.80 m s ⁻²			
Permittivity of a vacuum	ε _ο .	8.8542 × 10 ⁻¹² F m ⁻¹			
Mechanical equivalent of heat		1 calorie ≡ 4.18 J			

Table 2: IR Correlation table for common functional groups

Functional group	band (cm ⁻¹)
–CH₃	2950-75 (s), 2870-90 (m), 1440-65 (m), 1370-90 (s)
-CH ₂ (acyclic)	2910-40 (s), 2840-80 (m), 1440-80 (m), ~720 (w)
-CH	2880–90 (w), ~1340 (w)
-C=CH ₂	2970–3070 (m), 1290-1420 (w), 860-900 (w)
-CH=CH- (cis)	675–730 (m)
-CH=CH- (trans)	960–70 (m)
-C=C-	1620-80 (m)
Aryl-H	3010-80 (m), 1000-1250 (w), 700-900 (m)
Aryl C=C	1590–1620 (v), 1575–90 (v), 1470–1525 (v), 1430–65 (v),
	400–625 (m)
C≡CH	~3300–40 (s), 700–900 (m)
-C≡C-	2100-2250 (v)
water	~3700 ,
water of crystallisation	3100–3700
O-H (free)	~3600 (v)
O–H (intermolecular H-bond)	3200–3500 (s)
O–H (intramolecular H-bond)	3400-3600 (s)
O-H	1260–1400 (s)
C-OH	1020–1200 (s)
Aryl-O-H	~3600 (m), 1180-1390 (s), 600-700 (s)
COO-H (dimer)	2500–3300 (s)
COO-H (chelated)	2500–2700 (s)
C-O-C (all kinds)	1050–1250 (v)
N−H	3200–3500 (m), 1500–1600 (s), 650–900 (s)
C-N_	1020–1200 (m)
C(=O)N-H (amide)	3200–3400 (s), ~1450 (s), 1590–1650 (m)
CF	1000–1400 (s)
CCl	600–800 (s)
C-Br	500–750 (s)
C-I	~500 (s)
NO ₂	1660–1490 (s), 1390–1260 (s)
C≡N	~2250 (s)

Table 3: IR Correlation table for carbonyl groups

Functional group	Туре	band (cm ⁻¹) (all strong			
		absorptions)			
RC(=0)R'	saturated aliphatic	1715–45			
ketones	aryl	1650–1700			
	α-β unsaturated	1660–1700			
•	cyclobutanone	~1780			
	cyclopentanone	~1750			
	α halo	1730–50			
	β-diketone (enol form)	1580–1640			
RC(=O)H	sat aliphatic	1720-40			
aldehydes	α-β unsat	1685–1705			
•	aryl	1685–1715			
	β-keto (enol form)	1645-70			
	α-halo	1730–65			
СООН	sat. aliphatic (dimer)	1700-25			
carboxylic acids	sat. aliphatic (monomer)	1740-1800			
	aryl (dimer)	1680-1710			
	α-βunsat	1690-1715			
	a halo (dimer)	1715-40			
	H-bonded (intramolecular)	1650-80			
	anion	1550-1610, 1300-1420			
C(=0)-O-C=O	sat aliphatic	1800-40, 1740-80			
acid anhydrides	α-β unsat, aryl	1780–1830, 1710–55			
C(=O)X	X = Cl sat aliphatic	1790–1815			
acid halides	X = Cl α-β unsat, aryl	1735–50, 1765–90			
COOR	sat aliphatic	1725-50			
Esters	α-β unsat, aryl	1705-40			
	RCOOC=C	1750-1800			
	α-keto	1740-60			
	β-eto	1635-55			
•	α-halo	1740-70			
	lactone (5 ring)	1760-80			
C(=0)-N	1º amide I	~1690			
Amides	amide II	~1600			
•	2º amide l	1670–1700			
	amide II	1510–50			
	3º amide	1630–70			
	lactam	1700			
amino acids	Free	1390–1425, 1560–1600			
C=N	oxime	1640-90			
<u> </u>	imine	1640-90			