UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2015, MAY

TITLE OF PAPER

Introductory Organic Chemistry

COURSE NUMBER

C203

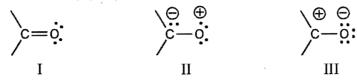
TIME

Three Hours

INSTRUCTIONS

Section A is compulsory. Answer any three

questions from Section B. Each question carries 25

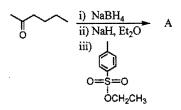

marks

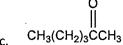
This Examination Paper Contains Ten Printed Pages Including This Page

You are not supposed to open the paper until permission to do so has been grated by the Chief Invigilator.

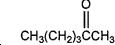
Section A: (compulsory - answer all questions)

1. Which of the following resonance structures is not a significant contributor to the hybrid for the carbonyl group?

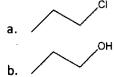

- a. I
- b. II
- c. III
- d. Neither II nor III is important
- e. All are significant contributors
- 2. The following transformation would be considered a(n)?

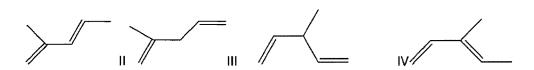

- a. Reduction
- b. Oxidation
- c. Addition
- d. Elimination
- e. Rearrangement
- 3. Which reaction is an oxidation?
 - a. RCHO → RCO₂H
 - b. RCH₂OH → RCHO
 - c. RCH₂OH → RCO₂H
 - d. None of these
 - e. All of these
- 4. Which of the reagents listed below would efficiently accomplish the transformation of

CH₃CH₂CH=CHCH₂CH₂CHO into CH₃CH₂CH=CHCH₂CH₂CH₂OH?


- a. KMnO₄
- b. NaBH_{4.}
- c. Br₂ in CCl₄
- d. H₂/Ni,
- e. Two of the above
- 5. What would be the major product of the following reaction?

- a. CH₃CH₂OCH(CH₃)CH₂CH₂CH₂CH₃
- b. (CH₃CH₂O)₂CHCHOHCH₂CH₂CH₃
- c. (CH₃CH₂)₂CHOHCH₂CH₂CHOHCH₃
- d. CH₃OCH(C₂H₅)CH₂CH₂CH₂CH₃
- e. CH₃CH₂CH(OCH₃)CH₂CH₂CHOHCH₃
- 6. What is the predominant product from the reaction of 2-hexanol with KMnO₄?
 - a. CH₃CO₂H
 - b. CH₃(CH₂)₃CO₂H


- c.
- d. CH₃(CH₂)₄CO₂H
- e. A) and B)
- 7. Which of the reagents listed below would serve as the basis for a simple chemical test to distinguish between (CH₃)₃COH and (CH₃)₂CHCH₂OH?
 - a. NaH
 - b. NaOH/H₂O
 - c. Br₂ in CCl₄
 - d. Cold conc. H₂SO₄
 - e. CrO₃ in H₂SO₄
- 8. What is the predominant product from the reaction of 2-hexanol with PCC in CH₂Cl₂?
 - a. CH₃CO₂H
 - b. $CH_3(CH_2)_3CO_2H$


- CH₃(CH₂)₄CO₂H
- e. A) and B)

9. What is the IUPAC name for:

- a. <u>p</u>-Hydroxyphenol
- b. <u>p</u>-Dihydroxybenzene
- c. Resorcinol
- d. 1,4-dihydroxybenzene
- e. 4-methylphenol
- 10. Which of the following has the highest boiling point?

- c. /
- d. >-cı
- e. None of the above
- 11. Ozonolysis of an unknown compound gave CH₂=O, CH₃CHO and CH₃COCHO. What are possible structures for the unknown compound?

- a. land ll
- b. I and IV
- c. II and III
- d. II and IV
- e. None of the above

Section B: (answer any 3 questions)

Question 1

- a. i) Write two isomeric structures of the compounds with the molecular formula C_2H_6O .
 - ii) Name the two isomers
 - iii) Give the organic classes of these compounds

(5marks)

b. Write the Fischer Projection structures for:

(4marks)

- (i) (R)-2-butanol
- (ii) (S)-glyceraldehyde {2,3-dihydroxypropanal, HOCH₂CH(OH)CHO}
- c. Give IUPAC names for the following compounds:

(iii)
$$\begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{C} \\ \\ \text{CH}_3 \end{array}$$

- d. Arrange the following alkyl bromides in order of decreasing reactivity in an S_N2 reaction; 1-bromo-2-methylbutane, 1-bromo-3-methylbutane, 2-bromo-2-methylbutane, and 1-bromopentane (4marks)
- e. Determine the products that will be formed from the S_N2 reaction of: (4marks)
 - i. 2-bromobutane and hydroxide ion (OH)
 - ii. (R)-2-bromobutane and hydroxide ion (OH)

Question 2

- a. Account for the fact that the boiling points of phenol and toluene are 182°C and 110.6°C, respectively, even though they have almost the same molecular weight (5 marks)
- (b) Write the Fischer Projection structures for:
 - (iii) (R)-2-Bromopropanoic acid
 - (iv) (R)-2,3-Dihydroxypropanal
 - (v) (S)-2-Aminobutanoic acid
 - (vi) (2S,3S)-Dichlorobutanoic acid
 - (vii) (2R,3R)-Dibromobutanal (10 marks)
- b. Show all the steps of the following reaction by S_N1 mechanism.

(10 marks)

$$\begin{array}{c|ccccc} CH_3 & & & CH_3 \\ \hline \\ CH_3CH_2C & & Br & & H_2O & & CH_3CH_2C & & OH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 & & CH_3 & & CH_3 \\ \hline \\ CH_3 & & & CH_3 \\ \hline \\ CH_3$$

Question 3

(a) Write the structure of the indicated intermediate products and the principal organic products of the following reactions:

(i)
$$\frac{\text{FeCl}_3 / \text{Cl}_2}{\text{H}_2 \text{SO}_4 / \text{SO}_3} ?$$

$$\frac{\text{H}_2 \text{SO}_4 / \text{HNO}_3}{\text{FeCl}_3 / \text{Cl}_2} ?$$
(ii)
$$\frac{\text{H}_2 \text{SO}_4 / \text{HNO}_3}{\text{(4marks)}} ?$$

(iii)
$$\frac{KMnO_4}{H^7} ? FeBr_3/Br_2 ?$$

$$\frac{CH_3}{H_2SO_4/SO_3} ?$$
(2marks)
$$\frac{KMnO_4}{H^7} ? (2marks)$$

$$Vi) \frac{Excess Br_2}{H_3C} A (2marks)$$

$$Viii) \frac{CH_3}{H_3C} ? (2marks)$$

$$\frac{CH_3}{H_3C} ? (2marks)$$

Question 4

- (a) Define the terms:
 - (i) Aldol addition
 - (ii) Crossed or mixed aldol additions

(4 marks)

(b) What kinds of products are formed from these reactions?

(2 marks)

- (c) Show the net reactions for the formation of the aldol adduct from
 - (i) propanal in dilute NaOH
 - (ii) acetone in dilute NaOH

(4 marks)

- (e) Outline a general mechanism for the acid-catalyzed aldol additions of carbonyl compounds. (7 marks)
- f) What would be the product of the reaction of phenylmagnesium bromide with each of the following reagents?
 - 1. H₂O
 - 2. C₆H₅COCl
 - 3. H₂CO
 - 4. CH₃CH₂CH₂CH₂COOH

(8 marks)

Question 5

- (b) What would be the products of the hydration of 3,3-dimethyl-1-pentene $\{CH_3CH_2CH_2(CH_3)_2CH=CH_2\}$ using:
 - (i) Acid-catalysed hydration

(5 marks)

(ii) Oxymecuration-demercuration

(5 marks)

(iii) Hydroboration-oxidation

(5 marks)

(c) Outline the mechanism for the following Friedel-Crafts Alkylation reaction:

(10 marks)

UNIVERSITY OF SWAZILAND

CHEMISTRY DEPARTMENT

C203 SECTION A ANSWER SHEET

STUDENT ID NUMBER:	
The correct answer must be indicated by putting a circle on the letter for that answer on the	ıe
answer sheet provided. If you change your answer, please cancel the wrong answer with a cro	SS
and then put a circle around the correct one. If more than one option has a circle around it	а
zero will be given for that question.	

1	Α	В	С	D	E
2	Α	В	С	D	E
3	Α	В	С	D	Е
4	Α	В	С	D	E
5	Α	В	С	D	E
6	Α	В	С	D	E
7	Α	В	С	D	E
8	Α	В	С	D	E
9	Α	В	С	D	E
10	Α	В	С	D	E
11	Α	В	С	D	. E
12	Α	В	С	D	E
13	Α	В	С	D	E

_	
r ->	J
•	٦

hydrogen	1																	helium
1																		2
Н																		He
1.0079		,													,			4.0026
Mhium 3	beryllium 4												boion 5	carbon 6	nitrogen 7	axygen 8	fluorine 9	neon 10
	l '												-	1	•'•			1 .
Li	Be												В	C	N	0	F	Ne
6.941	9.0122											1	10.811	12.011	14.007	15,999	18.998	20.180
sodium	magnesium											1	aluminium	silicon	phosphorus	sufur	chlorine	argon
11	12												13	14	15	16	17	18
Na	Mg												Αl	Si	P	S	CI	Ar
22.990	24.305											1	26.982	28.086	30.974	32,065	35.453	39.948
potassium	calcium		scandium	titantum	vanadium	chromium	manganese	iron	coball	nickel	copper	zinc	galikum	germanium	arsenic	saleņium	bromine	krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47,867 Zirconium	50.942 niobium	51.996 molybdenum	54.938 lechnetium	55.845 ruthenium	58.933	58,693 palladium	63,546 silver	65.39	69.723	72.61	74.922	78.96	79.964	83.80
37	38		39	40	41	42	43	44	thedium 45	46	47	cadmium 48	Indium 49	tin 50	antimony 51	lellurium 52	iodine 53	xenon 54
						1 1							_	l .			33	
Rb	Sr		Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	ln	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102,91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131,29
caesium	barium	F7 74	lutetium	hafnlum	tantalum	tungsten	rhentum	osmkim	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137,33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrencium 103	rulherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unumunkim 111	ununbium 112		ununquadium 114				
1		* *	_	Rf	Db	1 1	Bh	Hs	Mt	1	Uuu	1						
Fr																		
Fr 1223	Ra	^ ^	Lr [262]	[261]	12621	Sg	[264]	[269]	1 VIL (268)	Our I	Uuu 12721	UUD		Uuq				

*Lanthanide series

**Actinide series

lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promelhium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Ľa	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	(145)	150,36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
actinium	thorium	protaclinium	uranium	neplunium	plutonium	americium	curium	berkelium	californium	einsleinium	fermium	mendelevium	aobelium
89	90	91	92	93	94	95	96	97	98	99	100	101	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
[227]	232.04	231,04	238,03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	(258)	[259]