DEPARTMENT OF CHEMISTRY

UNIVERSITY OF SWAZILAND

JUNE 2014 SUPPLEMENTARY EXAMINATION

TITLE OF PAPER

: INTRODUCTION TO ANALYTICAL CHEMISTRY

COURSE NUMBER

: C204

TIME

: 3 HOURS

Important Information

: 1. Each question is worth 25 marks.

2. Answer any **four (4)** questions in this paper.

3. Marks for $\underline{\boldsymbol{ALL}}$ procedural calculations will be awarded.

4. Start each question on a fresh page of the answer sheet.

5. Diagrams must be large and clearly labelled accordingly.

6. This paper contains an appendix of chemical constants

7. Additional material: graph paper.

You are not supposed to open this paper until permission has been granted by the chief invigilator

QUESTION 1 [25]

.

a)	The following	ng data was	obtained from	m the analysis	of a sample in ppm;	
	26	25	24	26	15	
i) ii)				•	e data at 95% confidence r the same analysis yields	
	33	26	25	35	33	
Do the	two method	s give the sa	ame result at	the 95% confi	dence level?	(5)
iii)		ent on the ac 32ppm.	ccuracy of the	e second meth	od at 95% confidence lev	vel, if the 'true' (2)
b)		•	•	_	n analyst performs a stan Outline the experimental	,
	performing	standard ac	dditions, usin	g diagrams wh	ere applicable to illustrat	te. (7)
c)		nd their use	•		alibration curves with starly explain how an extern	
d)	Give two di	sadvantage	s of using sta	ndard additior	compared to external ca	alibration (3)
QUEST	ION 2 [25]					
a)	Describe ho	ow 2.00L of	0.0500M AgN	IO₃ can be pre	pared from a primary gra	nde solid of (5
b)			- ,	· ·	riefly describe what happ nges of this step during gr	•
	analysis.					(4)
	ii) What is p	peptization?	P How can this	s phenomenoi	n be avoided during gravi	metric analysis (3
c)	A 50.0 mL d	of 0.0500M	NaCl is titrate	ed with 0.1000	M AgNO ₃ . Calculate the p	Ag value at the
	following st	tages of the	titration, give	en that for Ag	Cl, Ksp = 1.82×10^{-10} .	
i)	After ad	ldition of 10	0.0 mL of AgN	03		
ii)	At equiv	/alence poin	nt			
iii)	At 26.0	mL				
iv)	Plot the	titration cu	ırve			(10)
d)	Explain wh	at is meant	by standardiz	ation in titrati	on and give one example	of a primary
	standard u	sed in acid-l	hase titration			(3)

QUESTION 3 [25]

- a) What are the assumptions that are made in the establishment and application of the least squares method? (2)
- A calibration graph was prepared as part of a validation procedure for a new method to determine an active constituent of a sun cream by UV spectrophotometry. The following data were obtained;

Analyte								
Concentration								
(mg/cm3)	0	20	40	60	80	100	120	Unknown
UV absorbance								
at 325 nM	0.095	0.227	0.409	0.573	0.786	0.955	1.123	0.350

- i) Check for the linearity of the data by calculating the correlation coefficient, r.
- ii) Use the method of least squares regression analysis of the data to calculate the slope, intercept, and concentration of the unknown.
- c) i) Draw the Gaussian curve. (2)
 - ii) Indicate clearly the position of 1 σ (1)

(15)

- iii) Indicate clearly the position of μ (1)
- iv) State the percentage of the area under a normalized Gaussian curve covered by $\mu \pm 2\sigma$ (2)
- d) Explain the difference between accuracy and precision (2)

QUESTION 4 [25]

- a) The standard hydrogen electrode (SHE) is the electrode against which all electrode potentials are referenced.
 - (i) Draw the SHE and label all components. What is the role for the platinum? Why is it a suitable metal for this role? (3)
 - (ii) What specifications should be met by the SHE? (2)
 - (iii) State the function of the salt bridge and explain how it works. (2)
- b) i) Using an example differentiate between an oxidizing and reducing agent. (3)
 - ii) Calculate the potential of the following cell and indicate the reaction that would occur spontaneously if the cell were short circuited.

Pt | U^{4+} (0.200M), UO_2^{2+} (0.0150 M), H^+ (0.0300 M) || Fe^{2+} (0.0100 M), Fe^{3+} (0.0250 M) | Pt The two half reactions are;

$$Fe^{3+} + e^{-} \leftrightarrow Fe^{2+}$$
 $E^{\circ} = +0.771 \text{ V}$ $UO_2^{2+} + 4H^{+} + 2e^{-} \leftrightarrow U^{4+} + 2H_2O$ $E^{\circ} = +0.334 \text{ V}$ (6)

c) What is K_b for the equilibrium;

$$CN^- + H_2O \leftrightarrow HCN + OH^-$$
 (3)

- d) i) What is the difference between 'end point' and 'equivalence point' in precipitation titrimetry? (2)
 - ii) For the standardization of sulphuric acid, 0.4512 g sample of primary-standard grade sodium carbonate required 36.44mL of an H_2SO_4 solution to reach an end point. What is the molarity of the H_2SO_4 ? (4)

0. 83

QUESTION 5 [25]

 a) An analysis is carried out in water to determine the concentration of Cu in a river passing through the Matsapha industrial site. The instrument was calibrated via standard addition method, and the response obtained is listed below;

Standard Addition Concentration (mg/L)	Instrument Reading(Units)
0	12
3	16
5	27
10	37
15	k49
20	61

Assuming that no interferences are present, determine the Cu concentration within the sample in ppb using the graph method if the sample measured was prepared by diluting to volume 1 ml of sample extract into a 10 mL volumetric flask.

(10)

- b) One of the challenges in the quantification of elements is the problem of interferences.

 Explain what is meant by interferences giving a specific example and a solution on how this interference can be eliminated. (5)
- c)
 i) Differentiate between primary standard and a secondary standard for titrimetric analysis (2)
- ii) Give four (4) desirable properties for a primary standard used for titration purposes.
 (4)
- d) Explain the term 'Homogeneous precipitation'. What necessitates this method and what are its unique advantages? (4)

QUESTION 6 [25]

- a) i) Distinguish between systematic and random errors, using examples to illustrate. (4)
 - ii) Explain three (3) different ways which can be used to detect systematic errors. (3)
- b) An atomic absorption method for the determination of copper content in fuels yielded a pooled standard deviation of spooled = 0.32 μ g Cu/mL (s \rightarrow σ). The analysis of the oil from a reciprocating aircraft engine showed a copper content of 8.53 μ g Cu/mL.
 - i) Calculate the 99% confidence limits for the result based on a mean of four (4) analyses.
 - ii) How many replicate measurements are necessary to decrease the 99% confidence for the analysis to ± 0.20 μg Cu/mL?
- c) A standard method for the determination of carbon monoxide (CO) level in gaseous mixture is known from many hundred measurements to have a standard deviation of 0.21 ppm CO. A modification of the method yields a value for s of 0.15 ppm CO pooled from a data set with 12 degrees of freedom.
 - i) Does the modification give more precise measurements than the original method at 95 % confidence level? (3)
 - ii) What is 0.21ppm CO in mol/L (2)
- d) 150.0 mL of 0.2105 M nitric acid was added in excess to 0.5 Kg sample with calcium carbonate. The excess acid was back titrated with 0.1055 M sodium hydroxide. It required 75.5 mL of the base to reach the end point.
 - Calculate the percentage (w/w) of calcium carbonate in the sample. (7)

APPENDIX

VALUES OF t FOR VARIOUS LEVELS OF PROBABILITY												
Number of Observations	Factor for Confidence Interval											
	80%	80% 90% 95% 99% 99.90%										
1	3.08	6.31	12.7	63.7	637							
2	1.89	2.92	4.3	9.92	31.6							
3	1.64	2.35	3.18	5.84	12.9							
4	1.53	2.13	2.78	4.6	8.6							
5	1.48	2.02	2.57	4.03	6.86							
6	1.44	1.94	2.45	3.71	5.96							
7	1.42	1.9	2.36	3.5	5.4							
8	1.4	1.86	2.31	3.36	5.04							
9	1.38	1.83	2.26	3.25	4.78							
10	1.37	1.81	2.23	3.17	4.59							
11	1.36	1.8	2.2	3.11	4.44							
12	1.36	1.78	2.18	3.06	4.32							
13	1.35	1.77	2.16	3.01	4.22							
14	1.34	1.76	2.14	2.98	4.14							

CRITICAL VALUES FOR REJECTION QUOTIENT Q										

Number of	90%	95%	99%							
Observations	Confidence	Confidence	Confidence							
3	0.941	0.970	0.994							
4	0.765	0.829	0.926							
5	0.642	0.710	0.821							
6	0.560	0.625	0.740							
7	0.507	0.568	0.680							
8	0.468	0.526	0.634							
9	0.437	0.493	0.598							
10	0.412	0.466	0.568							

Confidence Levels for Various Values of z

Confidence Level , %	
50	0.67
68	1.00
80	1.28
90	1.64
30 /	1,04
95	1.96
95.4	2.00
99	2.58
99.7	3,00
99.9	3.29

Table 4-5	Critical	values (d F	at %	5% cent	îdence b	evel							
Degrees of freedom		Degrees of freedom for s ₁												
for s ₂	2	3	4	5	6	7	8	9	10	12	15	20	30	- CD
2	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19,4	19,4	19,4	19.4	19.5	19.5
3	9.55	9.28	9.12	9.01	8.94	3.89	8.84	8.81	8,79	8.74	8.70	8.66	8.62	8.53
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.75	5.63
5	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4,62	4.56	4.50	4.36
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.81	3.67
7	4.74	4.35	4.12	3.9?	3.87	3.79	3.73	3.68	3,64	3.58	3.51	3.44	3.38	3.23
8	4.46	4.07	3.84	3.69	3.53	3.50	3.44	3.39	3.35	3.23	3.22	3.15	3.08	2.93
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.86	2.71
10	4.10	3.71	3,48	3.33	3.22	3.14	3.07	3.02	2,98	2.91	2.84	2,77	2.70	2.54
П ,	3.98	3.59	3.36	3.20	3.10	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.57	2.40
12	3.88	3,49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.47	2.30
13	3.81	3.41	3.18	3,02	2 92	2.83	2.77	271	2.67	260	2.53	2.46	2.38	2.21
14	3.74	3.34	3.11	2,96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.31	2.13
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.25	2.07
16	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.19	2.01
17	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2,49	2.45	2.38	2.31	2.23	2.15	1.96
18	3.56	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.11	1.92
19	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.07	1.88
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2,35	2.28	2.20	2.12	2.04	1.84
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.84	1.62
*	3.00	2.60	2.37	2,21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.46	1.00

USEFUL CONSTANTS

 $K_w = 1.00 \times 10^{-14}$

 $K_a \ [HCN] = 6.20 \times 10^{\,-10}$

~ .			•
Quantity	Symbol	Value .	General data and
Speed of light	t c	2.997 924 58 × 10° m s ⁻¹	fundamental
Elementary charge	7	7.502.777 X 10-15 C	constants.
Faraday constant	$F = eN_{\lambda}$	9.6485 × 10 ⁴ C mol ⁻¹	
Boltzmann constant	k	1-380 66 × 10-22 J K-1	
Gas constant	$R = kN_A$	8.31451 J K-1 mol-1	•
	•	8.205 78 × 10 ⁻²	
,*		dm² atm K-1 mol-1	
Planck constan	nt h	62.364 L Torr K-1 moi-1	•
		6.525 08 × 10-24 Js	
Avogadro	N _k	1.054'57 × 10 ⁻³⁴ Js	
constant	, ¹⁷ 4	6.022 14 × 10 ²³ mol ⁻¹	
Atomic mass unit	u .	1.660 54 × 10 ⁻²⁷ kg	•
Mass of	•	·	
electron proton	m.	9.109 39 × 10 ⁻³¹ kg	•
Neutron	m _a	1.572-62 x 10 ⁻²⁷ kg	
Vacuum	m _n	1.574 93 × 10 ⁻²⁷ kg	
permeability	t ^u a	$4\pi \times 10^{-7} \text{J s}^2 \text{C}^{-2} \text{m}^{-1}$	
•		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^2$	•
Vacuum Permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	•
Parimental	4πε ₀	1.112.65 × 10 ⁻¹⁰ J ⁻¹ C ¹ m ⁻¹	
Bohr magneton	μ _s = eti/2m.	9-274 02 × 10 ⁻²⁴ J T ⁻¹	•
Nuclear magneton	$\mu_{\rm H} = e \hbar/2 m_{\rm p}$	5.050 79 × 10-27 J 7-1	•
Electron g value .	G .	2.002 32	
Bohr radius	$a_2 = 4\pi \epsilon_0 h^2/m_e t$	5.291 77 × 10 ⁻¹¹ m	
Rydberg constant	$R:=m_{\pi}s^{4}/8h^{3}c$	1.097 37 × 10 ⁸ cm ⁻¹	
Fine structure constant	$a=\mu_0e^2c/2h$	7.297 35 × 10 ⁻³	
Gravitational constant	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻²	·
Standard (acceleration	.	. 9.806 65.73. <u>s</u> -?	
of free fall;			•
			ੇ ਫੈਸਵਧ (defined) values
f p	n μ m	e dk MG	Prefixes
femto pico	nano micro milli		
	10-4 10-4 10-3	10 ⁻³ 10 ⁻¹ 10 ³ 10 ⁶ 10 ³	
			•

-

PERIODIC TABLE OF ELEMENTS

	GROUPS																	
		2	3	4	5	6	7	8	9."	10	111	12.	13	14	15	16	1.17	18
PERIODS	IA	IIA	11113	IVB	VB	Vin	VIII	1	VIIIB		In	IIB	IIIA	IVA	٧٨	VIÁ	VIIA	VIIIA
1	1,008		•		-						•	, ,	1 414 214					4.001
1 1	.11																	lle
	1 1		_															2
	6.941	9.012	1									ic muss —		12.011	14.007	15.999	18.998	20.180
2	Li	Be	l							_		nbol –	₽B	C	N	0	F	Ne
1	3	4	l			•					Aton	nic No. $\overline{}$	5	6	7	8	9	10
	22.990	24.305	1	26.982 28.086 30.974 32.06 35.453 39.												39.948		
3	Na	Mg	ŀ			TRAN	SITION	I ELEM	ENTS				Al	Ši	P	S	CI	Λr
	11	12											13	14	15	16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39 .	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
1 7	19	20	21	22	23	24	25	26	27	28	29	30.	31	32	33	34	35	36
	85.468	87.62	88.906	91,224	92.906	95.94	98.907	101.07	102,91	106.42	107.87	112.41	114.82	118.71	121.75	127,60	126.90	131.29
5	Rb	Sr	Ÿ	Źr	Nb	Mò	Tc	Ru	Rh	Pd	Ág	Cd	In	Sn	Sb	Te	I	Xe
"	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192,22	195.08	196.97	200.59	204,38	207.2	208.98	(209)	(210)	(222)
6	- es-	owDu-	bir		Pa	W	· Re	⊝s	ren igs (Pt -	Au	Hg	TI	Pb	Bi	Po	Λt	fen
	- 55	- 56	57_	72	73	74_	75	76	77	78	79	80	18	82	83	84	85	86
	223	226.03	(227)	(261)	(252)	(20)1	(262)	(283)	(266)	(267)								•
7	Fr	Ra	**Ac	Rf	Ha	Unh	Uns	Uno	Une	Uun								
1	. 87	88	89	104	105	106	f07	108	109	110								

*Lanthanide Series

** Actinitle Series

140.12	[40,91	144.24	(145)	150.36	151.96	157.25	158.93	162,50	.164.93	167.26	168.93	173.04	174.97
Ce	Pr 59	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58		60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	92	217.05	(244)	(243)	(247)	(247)	(251)	(252) ⁻	(257)	(258)	(259)	(260)
::Th	Pa		Np.	Pu	Am.	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91		93	94	25	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.