UNIVERSITY OF SWAZILAND FINAL/SEMESTER EXAMINATION, 2012/2013

TITLE OF PAPER

: Advanced Analytical Chemistry

COURSE NUMBER

C404

:

TIME ALLOWED

Three(3) Hours

INSTRUCTIONS

Answer any FOUR(4) questions.

Each question carries 25 marks.

A periodic table and other useful data have been provided with this paper.

REQUIRED:

GRAPH PAPER

You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator.

Question 1 (25 marks) Question 1(25 marks)

- (a) For the following two terms: cell constant, K, and equivalent conductance, Λ , for a conductivity cell
 - (i) Define each of them and state their S.I. Units

[3]

(ii) Derive a relationship between the two of them.

[2]

- (b) Account for the difference in the variation patterns of molar/equivalent conductances of strong and weak electrolytes with concentration. Show how this phenomenon is employed for the determination of Λ^0 , (Equivalent conductance at infinite dilution), for strong electrolytes while it is not applicable in the case of weak electrolytes. [6]
- (c) Given the Table below:

Conc ⁿ : (M)	$\Lambda(S \text{ cm}^2 \text{ mol}^{-1})$				
	HCl	NaCl			
0.0005	422.74	124.50			
0.001	421.36	123.74			
0.005	415.80	120.65			
0.010	412.00	118.51			
0.020	407.24	115.76			
0.050	399.09	116.06			
0.100	391.32	106.74			

- (i) Comment on the general variation of Λ with concentration [1]
- (ii) For which of these salt solutions does Λ vary more rapidly and why? [2]
- (iii) If conductivity data of aqueous solutions of ½CaCl₂ and ½CaSO₄ of some concentrations were included in the above data, arrange the two salts in decreasing order of rapidity of variation of Λ with concentration [1]
- (d) A given solution of acetic acid has a concentration of 2.414x 10⁻³ M and molar conductance of 32.22 S cm² mol⁻¹. Calculate:
 - (i) The degree of dissociation of acetic acid at this concentration.
 - (ii) The ionization constant, K_i.

[10]

$$(\lambda_{\rm H}^{0} = 349.6 \text{ S cm}^2 \text{ mol}^{-1}; \lambda_{\rm OAC}^{0} = 40.9 \text{ S cm}^2 \text{ mol}^{-1})$$

Question 2 (25 marks)

(a). State specifically the measures you would take so as to maximize accuracy of data during a conductometric titration experiment. [4]

- (b). Summarize the procedure for end point determination during a conductometric titration. Why are measurements near equivalent points unnecessary? [3]
- ©. The titration of a weak acid with a weak base is preferred to the titration of a weak acid with a strong base. Justify this statement, using specific examples with illustrative diagrams. [4]
- (d). For the conductometric titrations of HCl with 0.50 M NaOH and of HCl with 0.50 M NH₄OH:
 - (i). Give a sketch of the expected shape of the titration curve in each case.
 - (ii). Indicate the equivalent point in each case.
- (e), On titrating a solution containing a mixture of an aliphatic acid and an aromatic sulphonic acid conductometrically with a 0.200M NH₃ solution (as titrant), the following data (after correcting for the titrant volume), were obtained:

Burette Reading (mL)	0.00	1.00	2.00	2.50	3.00	3.20	3.50	4.20	5.00	6.00	8.00
Λ (Scm ² equiv- ¹)	2.01	1.75	1.47	1.33	1.19	1.19	1.26	1.51	1.51	1.52	1.53

(i). Calculate the number of equivalents of each acid present in the mixture.

(ii) Comment briefly on the shape of the titration curve.

[10]

[4]

Question 3 (25 marks)

- (a). Give two favourable features associated with electrochemical methods and give an illustrative example in each case. [3]
- (b). Differentiate between the following:
- (i). A galvanic and an electrolytic cell.
- (ii). A faradaic and a non-faradaic process.
- (iii). A chemically reversible and irreversible process.

[6]

- © (i) Employing a real or hypothetical reaction, obtain the Nernst equation for the estimation of the potential for an electrode half reaction.
 - (ii) Under what condition is the Nernst equation applicable to a reaction at equilibrium? [6]

(d). For the following half – cell reactions:

$$PtCl^{2-}_{6}$$
 + $2e^{-}$ = $PtSl^{2-}_{4}$ + $2Cl^{-}$ E^{0} = 0.68 V
 V^{3+} + e^{-} = V^{2+} E^{0} = -0.225 V

- (i). Write the overall cell reaction and calculate the corresponding cell voltage.
- (ii). Identify the anode, the cathode and the direction of spontaneous reaction.
- (iii) Calculate ΔG and K (the equilibrium constant) for the overall reaction. [10]

Question 4(25 marks)

- (a). Define a reference electrode and state the salient characteristics of an ideal one. [5]
- (b). Give a brief discussion of the make up, the half cell line notation and the half cell reaction of a saturated calomel electrode. [5]
- ©. The potential (in volts), of some reference electrodes vs SHE, as a function of temperature are as tabulated below:

Temp (°C)	Calomel (0.1 M KCl)	Calomel (Saturated KCl)	Ag/AgCl (Saturated KCl)
10	0.3362	0.2543	0.2138
20	0.3359	0.2479	0.2040
25	0.3356	0.2444	0.1989
30	0.3351	0.2411	0.1939
40	0.3336	0.2340	0.1835

- (i). Which of the electrodes has the poorest potential stability towards temperature variation, and how does this affect its performance as a reference electrode?
- (ii). Arrange the electrodes in the increasing order of their potential temperature coefficient(or gradient).
- (iii). Which would you choose for an analysis: a saturated calomel electrode or a 0.1M KCl calomel electrode? Explain. [8]
- (d). State the advantages of Ag/AgCl reference electrode over a SCE. [2]
- (e). A cell consisting of a SCE (E = 0.25 V), and an electrode of unknown potential, has a cell potential of 0.62 V. Calculate the potential of the unknown electrode if the polarity of he SCE is: (i) positive, (ii). Negative [5]

Question 5 (25 marks)

O

- (a) State four favourable features of potentiometric titration.
- [2]

- (b) (i) Explain the term 'concentration polarization'
 - (ii) How can it be minimized during an electrogravimetric analysis?
 - (iii) Demonstrate graphically the effects of concentration polarization on the current potential behaviour of galvanic and electrolytic cells.

[9]

A Na₂PtCl₆ sample weighing 247.90mg was ___analyzed for its chloride content. The Pt(IV) was reduced to Pt metal using hydrazine sulphate. The liberated Cl⁻ was titrated potentiometrically with 0.2314M AgNO₃ using a Ag indicator electrode and a SCE reference electrode. The data obtained are tabulated below:

Vol. of AgNO3 (mL)	E vs SCE (V)		
0.00	0.072		
13.00	0.140		
13.20	0.145		
13.40	0.152		
13.60	0.160		
13.80	o.172		
14.80	o.196		
14.20	0.290		
14.40	0.326		
14.60	0.340		

- (i) Employing any of the conventional methods for 'end point determination, estimate the end point of this titration. [7]
- (ii) Calculate the apparent percent of the Cl in the sample, and the expected percent in a pure sample of this compound. [7]

Question 6 (25 marks)

- (a) Differentiate between the following:
- (i) Voltametry and coulometry.
- (ii) Voltametry and potentiometry.

[4]

(b) Discuss, very briefly, the salient features and the working principles of the dropping mercury electrode (DME). [6]

- © (i) Account for the use of a supporting electrolyte during polarographic analysis. Give two examples of such electrolytes. [3]
 - (ii) Why should the concentration of the supporting electrolyte be at least a 1000 fold greater than that of the analyte ion? [2]
- (d) (i) State the Ilkovic equation and define all the terms involved in it. [4]
 - (ii) A TeO²⁻³ sample was reduced polarographically in a 1.0000M NaOH solution. The DME used for the analysis has the following parameters: m = 1.50 mg/s, $i_d = 61.9 \mu\text{A}$, t = 3.15 s, $D = 0.75 \times 10^{-5} \text{cm}^2 \text{s}^{-1}$ for a 4.0 x 10⁻³M tellurium ion solution. What is the oxidation state to which the tellurium has been reduced during this analysis? [6]

PERIODIC TABLE OF ELEMENTS

G	\mathbf{p}_{ℓ}	11	m	c
(v)	Κl	"	,,,	

	1	2	3	4	5	6	7	8	9	. 10	11	12	.13	14	15	16	17	18
PERIODS	1/	IIA	IIIB	IVB	VB	VIB	VIIB		VIIIB		- IB	IIB	IIIA	IVA	VA	VIA	VIIA	VIIIA
	1.008										٠.							4.003
1	H																	He
	. 1		_	,		¥						ν.					<u> </u>	2
	6.941	9.012							*		Atom	ic mass —	10.811	12.011	14.007	15.999	18.998	20.180
2		Be									Syr	nbol 🗕	▶ B	C	N	0	F	Ne
	3	4									Atom	ic No.	> 5	6	7	8	9	10
	22.990	24.305											26.982	28.086	30.974	32.06	35.453	39.948
3	Na	Mg				TRAN	SITION	ELEM	IENTS				Al	Si	P	S	Cl	Ar
	11	12										*	13	14	15	. 16	17	18
	39.098	40.078	44.956	47.88	50.942	51.996	54.938	55.847	58.933	58.69	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fc	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	85.468	87.62	88.906	91.224	92.906	95.94	98.907	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.75	127.60	126.90	131.25
5	Rb	Sr	Y :	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52 :	53	54
	132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
6	Cs	Ba	*La	Hf	Ta	W.	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	55	56	57	72	73	74	75	76	77	78	79	80 ·	81	82	83	84	85	86
	223	226.03	(227)	(261)	(262)	(263)	(262)	(265)	(266)	(267)								
7	Fr	Ra	**Ac	Rſ	Ha 🕠	Unh	Uns	Uno	Unc	Uun								
	87	88	89	104	105	106	107	108	109	110								1. A. C.

*Lanthanide Series

**Actinide Series

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cſ	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103

() indicates the mass number of the isotope with the longest half-life.

	Quantity	Symbol	Value	General data and
	Speed of light?	C	2.997 924 58 × 10 ⁸ m s ⁻¹	fundamental
	-Elementary	·e	1.602 177 × 10 ⁻¹⁹ C	——constants— ———
-1 ₇ +	. charge	The second secon		
	Faraday constant	$F = eN_{\perp}$	9.64S5 × 10 ⁴ C mol ⁻¹	
	Ecitzmann constant	. k	1.380 66 × 10 ⁻²³ J K ⁻¹	and the first section of the section
	Gas constant	$R = kN_A$	8.314 51 J K ⁻¹ mol ⁻¹	
			3.205 78 × 10 ⁻²	
			dm² atm K-1 me	el ⁻¹
			62.364 L Torr K ⁻¹ mol ⁻¹	
	Planck constant	. h	6.626 08 × 10 ⁻¹⁴ J s	
		$h = h/2\pi$	$1.05457 \times 10^{-34}\mathrm{J}\mathrm{s}$	
	Avogadro constant	N _A	$6.02214\times10^{23}\mathrm{mol}^{-1}$	
· · · · · · · · · · · · · · · · · · ·	Atomic mass unit	u	$1.66054\times10^{-27}\mathrm{kg}$	
	Mass of electron	m,	9.109 39 × 10 ⁻³¹ kg	
	proton	<i>m</i> ₃	1.572 62 × 10 ⁻²⁷ kg	and the second s
	neutron -	m;	1.674 93 × 10 ⁻²⁷ kg	
**	Vacuum permeability†	μ,	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
		•	$4\pi \times 10^{-7} \mathrm{T^2} \mathrm{J^{-1}} \mathrm{m^3}$	
	Vacuum permittivity	$s_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	
	.	4πε ₀	$1.11265 \times 10^{-10} \text{ J}^{-1} \text{ C}^{2} \text{ m}^{-1}$	
	Sohr magneton	$\mu_2 = e\hbar/2m_*$	9.274 02 × 10 ⁻²⁴ J T-1	
ı	Nuclear magneton	$\mu_N = e \hat{n}/2m_p$	5.050 79 × 10 ⁻²⁷ J T ⁻¹	
<i>i</i> .	Electron g value	g.	2.002 32.	•
	Sonr radius	$a_2 = 4\pi \epsilon_0 \hbar^2/m_{\bullet} \epsilon$	5.291 77 × 10 ⁻¹¹ m	•
•	Rydberg constant	$R_{\star} = m_{\star}e^{4}/8h^{3}c$	$1.09737 \times 10^{5} \mathrm{cm}^{-1}$	
	Fine structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻³	
	Gravitational constant	G .	$6.67259 \times 10^{-11} \mathrm{N} \mathrm{m}^2 \mathrm{kg}^{-2}$	
	Standard E acceleration of free fallt	9	9.80 <u>6.65</u> m s	. t Exact (defined) values
	, I	•		
	نتمبر ا	n μ m	cdk M	G Prefixes
		ano micro milli	centi deci kilo mega g	iga .
************	10 ⁻¹⁵ 10 ⁻¹² 1	0-9 10-5 10-3	10-2 10-1 10-1 106 1	10 ⁹

APPENDIX C POTENTIALS OF SELECTED HALF-REACTIONS AT 25 °C

A summary of oxidation/reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems.

Half-reaction		<i>E</i> ° (V)
$F_2(g) + 2H^+ + 2e^-$	= 2HF	3.06
$O_3 + 2H^+ + 2e^-$	$= O_2 + H_2O$	2.07
$S_2O_8^{2-} + 2e^-$. So $S_2O_8^{2-} + 2e^-$	$= 2SO_4^{2-}$	2.01
$Ag^{2+} + e^{-}$	$= Ag^+$	2.00
$H_2O_2 + 2H^+ + 2e^-$	$= 2H_2O$	1.77
$MnO_4^- + 4H^+ + 3e^-$	$= MnO_2(s) + 2H_2O$	1.70
$Ce(IV) + e^-$	= Ce(III) (in 1M HClO ₄)	1.61
$H_5IO_6 + H^+ + 2e^-$	$= 10^{2} + 3H_{2}O$	1.6
Bi_2O_4 (bismuthate) + $4H^+ + 2e^-$	$= 2BiO^+ + 2H_2O$	1.59
$BrO_3^- + 6H^+ + 5e^-$	$=\frac{1}{2}Br_2 + 3H_2O$	1.52
$MnO_4^- + 8H^+ + 5e^-$	$= Mn^{2+} + 4H_2O$	1.51
$PbO_2 + 4H^+ + 2e^-$	$= Pb^{2+} + 2H_2O$	1.455
$Cl_2 + 2e^-$	= 2Cl ⁻	1.36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	$= 2Cr^{3+} + 7H_2O$	1.33
$MnO_2(s) + 4H^+ + 2e^-$	$= Mn^{2+} + 2H_2O$	1.23
$O_2(g) + 4H^+ + 4e^-$	$= 2H_2O$	1.229
$10_3^- + 6H^+ + 5e^-$	$= \frac{1}{2}I_2 + 3H_2O$	1.20
$Br_2(l) + 2e^-$	= 2Br	1.065
$ICl_2^- + e^-$	$=\frac{1}{2}I_2 + 2CI^-$	1.06
$VO_2^+ + 2H^+ + e^-$	$= VO^{2+} + H_2O$	1.00
$HNO_2 + H^+ + e^-$	$= NO(g) + H_2O$	1.00
$NO_3^- + 3H^+ + 2e^-$	$= HNO_2 + H_2O$	0.94
$2Hg^{2+} + 2e^{-}$	$= Hg_2^{2+}$	0.92
$Cu^{2+} + I^{-} + e^{-}$	= Cul(s)	0.86
$Ag^+ + e^-$	= Ag	0.799
$Hg_2^{2+} + 2e^-$	= 2Hg	0.79
$Fe^{3+} + e^{-}$	$= Fe^{2+}$	0.771
$O_2(g) + 2H^+ + 2e^-$	$= H_2O_2$	0.682
2HgCl ₂ + 2e ⁻	= Hg2Cl2(s) + 2CI-	0.63
$Hg_2SO_4(s) + 2e^-$	$= 2Hg + SO_4^{2}$	0.615
$Sb_2O_5 + 6H^+ + 4e^-$	$= 2SbO^+ + 3H_2O$	0.581
$H_3AsO_4 + 2H^+ + 2e^-$	$= HAsO_2 + 2H_2O$	0.559
$l_3^- + 2e^-$	= 31	0.545
$Cu^+ + e^-$	= Cu	0.52
$VO^{2+} + 2H^{+} + e^{-}$	$= V^{3+} + H_2O$	0.337
$Fe(CN)_6^{3-} + e^-$	$= \operatorname{Fe}(\operatorname{CN})_6^{2-}$	0.36
$Cu^{2+} + 2e^{-}$	= Cu	0.337
$UO_2^{2+} + 4H^+ + 2e^-$	$= U^{4+} + 2H_2O$	0.334
		(continued)

APPENDIX C (continued)

Half-reaction		<i>E</i> ° (V)
Hg ₂ Cl ₂ (s) + 2e ⁻	= 2Hg + 2Cl	0.2676
$BiO^{+} + 2H^{+} + 3e^{-}$	$= Bi + H_2O$	0.32
$AgCl(s) + e^{-}$	$= Ag + Cl^-$	0.2222
$SbO^{+} + 2H^{+} + 3e^{-}$	$= Sb + H_2O$	0.212
$CuCl_3^{2-} + e^-$	$= Cu + 3Cl^{-}$	0.178
$SO_4^{2-} + 4H^+ + 2e^-$	$= SO_2(aq) + 2H_2O$	0.17
$Sn^{4+} + 2e^{-}$	$= Sn^{2+}$	0.15
$S + 2H^+ + 2e^-$	$= H_2S(g)$	0.14
$TiO^{2+} + 2H^+ + e^-$	$= Ti^{3+} + H_2O$	0.10
$S_4O_6^2 + 2e^-$	$= 2S_2O_3^2$	0.08
$AgBr(s) + e^{-}$	$= Ag + Br^{-}$	0.071
2H+ + 2e-	= H ₂	0.0000
$Pb^{2+} + 2e^{-}$	= Pb	-0.126
$\operatorname{Sn}^{2+} + 2e^{-}$	= Sn	-0.136
$AgI(s) + e^{-}$	$= Ag + I^-$	-0.152
$Mo^{3+} + 3e^{-}$	= Mo	approx0.2
$N_2 + 5H^+ + 4e^-$	$= H_2NNH_3^+$	-0.23
$Ni^{2+} + 2e^{-}$	= Ni	-0.246
$V^{3+} + e^-$	$= V^{2+}$	-0.255
$Co^{2+} + 2e^{-}$	= Co	-0.277
$Ag(CN)_2^- + e^-$	$= Ag + 2CN^{-}$	-0.31
$Cd^{2+} + 2e^{-}$	= Cd	-0.403
$Cr^{3+} + e^{-}$	$= Cr^{2+}$	-0.41
$Fe^{2+} + 2e^{-}$	= Fe	-0.440
$2CO_2 + 2H^+ + 2e^-$	$= H_2C_2O_4$	-0.49
$H_3PO_3 + 2H^+ + 2e^-$	$= HPH_2O_2 + H_2O$	-0.50
$U^{4+} + e^{-}$	= U ³⁺	-0.61
$Zn^{2+} + 2e^-$	= Zn	0.763
$Cr^{2+} + 2e^{-}$	= Cr	-0.91
$Mn^{2+} + 2e^-$	= 'Ma	-1.18
$Zr^{4+} + 4e^-$	= Zr	-1.53
$Ti^{3+} + 3e^-$	= Ti	-1.63
$Al^{3+} + 3e^{-}$	= Al	-1.66
$Th^{4+} + 4e^{-}$	= Th	-1.90
$Mg^{2+} + 2e^{-}$	= Mg	- 2.37
$La^{3+} + 3e^{-}$	= La	- 2.52
$Na^+ + e^-$	= Na	-2.714
$Ca^{2+} + 2e^{-}$	= Ca	-2.87
$Sr^{2+} + 2e^-$	= Sr	-2.89
$K^+ + e^-$	= K	-2.925
Li+ + e-	= Li	- 3.045