UNIVERSITY OF SWAZILAND # SUPPLEMENTARY EXAMINATION 2012 TITLE OF PAPER: ADVANCED **INORGANIC** **CHEMISTRY** **COURSE NUMBER:** C401 **TIME ALLOWED:** **THREE (3) HOURS** **INSTRUCTIONS:** THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER. PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. # **QUESTION ONE** A \$4.5 - (a) (i) Assuming that the 18-electron rule applies, identify the third-row transition metal: - (1) $[(\eta^3-C_3Ph_3)(\eta^4-C_4H_4)M(NH_3)_2]^+$ - (2) $[(\eta^5-C_5H_5)M(CO)_3]_2$ (assume single M-M bond) - (3) $M(CO)_4Br(\equiv CPh)$ - (ii) What charge, z, would be necessary for $[(\eta^6-C_6H_6)_2Os]^z$ to obey the 18-electron rule? [4] - (b) If CO is a two electron donor and NO is a three electron donor, what are the possible formulae of the stable 18 electron Mo⁰ and Ru⁰ compounds containing just NO and/or CO? [5] - (c) Identify the Lewis acids and bases in the following reactions - (i) $BrF_3 + F^- \rightarrow BrF_4^-$ - (ii) $KH + H_2O \rightarrow KOH + H_2$ [4] - (d) (i) Complex A, $Ir(PPh_3)_2(Cl)_2(COCH_2Ph)$ [$v(CO) = 1670 \text{ cm}^{-1}$] rearranges cleanly to the isomeric compound B [$v(CO) = 2040 \text{ cm}^{-1}$] at 30 °C in benzene. Draw a possible structure for B. $$Ir(PPh_3)_2(Cl)_2(COCH_2Ph) \xrightarrow{C_6H_6/30^{\circ}C} \mathbf{B}$$ [4] - (ii) Suggest products in the following reactions: - (1) excess FeCl₃ with $(\eta^5-C_5H_5)_2$ Fe - (2) $(\eta^5-C_5H_5)_2$ Fe with PhC(O)Cl in the presence of AlCl₃ - (3) $(\eta^5-C_5H_5)_2$ Fe with toluene in the presence of Al and AlCl₃ - (4) $(\eta^5-C_5H_5)Fe(CO)_2Cl$ with Na[Co(CO)₄] [8] # **QUESTION TWO** - (a) Explain the following: - (i) $[Ti(CH_2Ph)_4]$ does not undergo β -H elimination. - (ii) The separation of lanthanides and actinides is very difficult. - (iii) During ion-exchange chromatography lutetium (Lu) is separated first and lanthanum (La) the last. [6] - (b) Of the metals Cd, Rb, Cr, Pb, Sr and Pd, which might be expected to be found in aluminosilicate minerals (silicate oxo anions) and which in sulphides? Justify your answer. [3] - (c) The reaction of the tetrahedral cluster {(Me₃Si)₃C}₄Ga₄ with I₂ in boiling hexane results in the formation of {(Me₃Si)₃CGaI}₂ and {(Me₃Si)₃CGaI₂}₂. In each compound there is only one Ga environment. Suggest structures for these compounds and state the oxidation state of Ga in the starting material and products. [5] - (d) Predict the structures of - (i) $[IF_6]^+$ - (ii) BrF₅ [6] - (e) (i) Determine the ground state term symbol for Tm³⁺. - (ii) Calculate the g-value expected for Tm³⁺. - (iii) Hence, calculate the effective magnetic moment, μ_{eff} , of Tm³⁺. [5] # **QUESTION THREE** | (a) | Sketch the structures of each of the following molecules, clearly indicating the ways in which the ligands are attached to the metal. | | | | | | | | |-----|---|---|----------|--|--|--|--|--| | | (i) | $(C_8H_8)]Mo(CO)_3$ | | | | | | | | | (ii) | $(C_5H_5)_2$ Fe $(CO)_2$ | [4] | | | | | | | (b) | How are the following compounds made? | | | | | | | | | | (i) | Fe(CO) ₅ | | | | | | | | | (ii) | $Co_2(CO)_8$ | | | | | | | | | (iii) | $Mn_2(CO)_{10}$ | [6] | | | | | | | (c) | (i)
(ii) | Describe the <u>three</u> classes of aprotic solvents, citing examples of each. Hydrosilation is a useful reaction that converts an alkene into a silylalkane. Predict the product of the following general hydrosilation reaction: | | | | | | | | | | R'-CH=CH ₂ + H-SiR ₃ \rightarrow where R = H, alkyl, aryl | | | | | | | | | (;;;) | SbCl ₃ may be used as a non-aqueous solvent above its melti | na noint | | | | | | | | (iii) | Suggest a possible self-ionization process for this solvent. | [9] | | | | | | | (d) | (i) | For the following, propose examples of isolobal organic fragment (1) A fragment isolobal with [(η ⁵ -C ₅ H ₅)Co(CO)] ⁺ (2) A fragment isolobal with Pt(CO) ₃ (3) A fragment isolobal with [(η ⁵ -C ₅ H ₅)Mn(CO) ₂] ⁻ | its: | | | | | | | | (ii) | Give organometallic fragments isolobal with each of the followin | g: | | | | | | | | (11) | (1) CH | 8. | | | | | | | | | (1) CH ₂ ⁺ | | | | | | | | | | (3) CH ₄ | [6] | | | | | | | | | (3) C114 | [o] | | | | | | | | | | | | | | | | a ### **QUESTION FOUR** - (a) Give a description of the bonding in $[Ir(CO)_6]^{3+}$ and compare it with that in the isoelectronic compound $W(CO)_6$. - (ii) How would you expect the IR spectra of these species to differ in the carbonyl stretching region? [6] - (b) Suggest reasons for the following observations: - (i) Although Pd(II) complexes with monodentate O-donor ligands are not as plentiful as those with P-, S- and As-donor ligands, Pd(II) forms many stable complexes with bidentate O,O'-donor ligands. - (ii) EDTA⁴⁻ forms very stable complexes with first-row *d*-block metal ions M^{2+} (e.g. log K = 18.62 for the complex with Ni^{2+}); where the M^{3+} ion is accessible, complexes between M^{3+} and EDTA⁴⁻ are more stable than between the corresponding M^{2+} and EDTA⁴⁻ (e.g. log K for the complex Cr^{2+} is 13.6, and for Cr^{3+} is 23.4). - (c) (i) Explain why the spin-only formula cannot be used to describe the magnetic properties of lanthanide (Ln) ions? - (ii) Suggest (giving equations) how the following species behave in H₂SO₄: - (1) H_2O - (2) NH₃ - (3) HCO₂H (given that it decomposes) [8] - (d) What type of reaction is the following, and by what mechanism does it occur? $Mn(CO)_5CH_3 + CO \rightarrow Mn(CO)_5(COCH_3)$ [4] - (e) Using the cluster valence electron (CVE) count suggest the metal cage framework adopted by each of the following clusters: - (i) $Os_5(CO)_{16}$ - (ii) HRu₆(CO)₁₇B - (iii) $Co_3(CO)_9Ni(\eta^5-C_5H_5)$ [3] # **QUESTION FIVE** - (a) Using Polyhedral Skeletal Electron Pair Theory (PSEPT) predict the metal core structures of the following clusters: - (i) $[H_2Ru_6(CO)_{18}]$ - (ii) $[Os_6(CO)_{18}]$ - (ii) $[H_2Ru_8(CO)_{21}]^2$ [9] - (b) The following is a list of reaction classes which encompasses the majority of the transformations of organometallic compounds: - A: Ligand substitution or dissociation - B: Oxidative addition - C: Reductive elimination - D: Migratory insertion Now consider the catalytic cycle of reactions which are known to occur in the Monsanto acetic acid process in which methanol combines with CO to form acetic acid: $$\text{CH}_3\text{OH} + \text{CO} \xrightarrow{\text{Rh catalyst}} \text{CH}_3\text{COOH}.$$ The steps in this cycle are labelled (1), (2), (3), and (4); the intermediate complexes are labelled I, II, III, and IV. - (i) Name the reaction steps corresponding to (1), (2), (3), and (4). - (ii) Determine the formal oxidation state and d electron configuration of the central metal (i.e. Mo(II) d^4) for each intermediate complexes I, II, III, and IV. - (iii) Identify coordinatively unsaturated ("16-electron") complexes. [10] . . . (c) (i) Explain why the following compound does not undergo β -H elimination: (ii) Complete the following scheme, inserting the missing nuclides and mode of decay: $${}^{238}_{92}U \xrightarrow{}^{\frac{1}{0}n} ? \xrightarrow{-\beta} ? \xrightarrow{}^{\gamma} {}^{239}_{94}Pu$$ [6] # **QUESTION SIX** - (a) When dichlorodimethylsilane, $(CH_3)_2SiCl_2$, is treated with alkali metals in tetrahydrofuran, THF, the main product X is a crystalline solid of composition, C, 41.4%; H, 10.3%; Si, 48.3%, and molecular weight 290. The proton NMR spectrum of X measured in benzene consists of a single band. Suggest structure for X. - (b) **M** is a First Transition Series element. It forms a carbonyl **F** of empirical formula M(CO)₅ which reacts with sodium amalgam, Na/Hg in tetrahydrofuran, THF to give a solution **G**. Treatment of **G** with 3-chloro-1-propene, CH₂=CHCH₂Cl gives a compound **H** of molecular formula C₈H₅H₅M. The infrared spectrum of **H** shows carbonyl stretching bands between 2110 and 2004 cm⁻¹, the ¹H NMR spectrum of **H** indicates protons in *four* chemically distinct environments. On heating H to 100 °C one mole of carbon monoxide, CO is eliminated to give **I**, C₇H₅O₄M [v_{CO} between 2110 and 1950 cm⁻¹]. The ¹H NMR spectrum of **I** indicates protons in *three* chemically distinct environments. - (i) Identify the metal M. - (ii) Propose and draw structures for the compounds F, H and I and for the species present in solution G. - (iii) Interpret the ¹H NMR features of H and I. - (iv) Discuss the bonding of the organic ligand to M in compound I. [8] - (c) It is believed that the catalytic role of organometallic complexes in effecting organic reactions may be understood in terms of successive steps generating 16-and 18-electron complexes from 18- and 16-electron molecules, respectively. Thus, the "hydroformylation" of olefins below is catalysed by HCo(CO)₄ derived from Co₂(CO)₈. $$CH_2=CHR + H_2 + CO \rightarrow RCH_2CH_2CHO$$ - (i) Outline the steps of the catalytic cycle. - (ii) Identify each cobalt-containing species as a 16- or 18-electron molecule - (iii) Kinetic studies indicate that the hydroformylation reaction is enhanced by an increase in H₂ pressure and inhibited by an increase in CO pressure. How is the mechanism in your cycle above consistent with these observations? - (d) The iron atom in Fe(CO)₅ is a weak Lewis base. However, replacement of a CO ligand with a phosphine to give, for example, Fe(CO)₄(PPh₃) causes the metal basicity to be enhanced. Why should this be the case? [3] # PERIODIC TABLE OF ELEMENTS | * ‡ | 7 | 6 | Un | 4 | w | 2 | - | PERIODS | |---------------------------------------|---------------------------|---------------------------|----------------------------|---------------------------|---------------------------|---------------------------------|-------------------------|----------------------| | *Lanthanide Series **Actinide Series | Fr
87 | 132.91
Cs
55 | 85.468
R.b
37 | 39.098
K | 22.990
Na
11 | 6.941
Li
3 | 1.008
H | IA 1 | | de Series
e Series | Ra
88 | 137.33
Ba
56 | 87.62
Sr
38 | 40.078
(Ca
20 | 24.305
Mg
12 | 9.012
Be
4 | . , | IIA | | | **Ac | 138.91
*La
57 | 88.906
Y
39 | 44.956
Sc
21 | | | | 3 | | Ce
58
232.04
Th
90 | (201)
Rf
104 | 178.49
Hf
72 | 91.224
Zr
40 | 47.88
Ti
22 | · · · . | | | IVB | | Pr 59 231.04 Pa 91 | 140 01 | 180.95 Ta 73 | 92.906
Nb
41 | 50.942
V
23 | | | Š | VB | | Nd
60
238.03
U
92 | Unh
106 | 183.85
W
74 | 95.94
Mo
42 | 51.996
Cr.
24 | TRAN | | | VIB VIB | | Pm
61
237.05
Np
93 | Uns
107 | 186.21
Re
75 | 98.907
Tc
43 | 54.938
Mn
25 | TRANSITION ELEMENTS | | • | 7
VIIB | | Sm
62
(244)
Pu
94 | Uno
108 | 190.2
Os | 101.07
Ru
44 | 55.847
Fe
26 | Wata | | | 8 | | Eu
63
(243)
Am
95 | Une
109 | 192,22
14 | 102.91
Rth
45 | · · · · · | ENTS | | - | GROUPS
9
VIIIB | | Gd
1, 64
(247)
Cm
96 | Uun
110 | 195.08
Pt
78 | 106.42
Pd · | 58.69
Ni
28 | · · | | | 10 | | 17b 65 65 Bk 97 | 158 93
••••••• | 196.97
Au
79 | 107.87
Ag
47 | 63.546
Cu
29 | | Atomi
Syr
Atom | | B 11 | | Dy
66
(251)
Cr
98 | 162 50 | 200.59
Hg
80 | 112.41
Cd
48 | 65.39
Zn
30 | | Atomic mass Symbol Atomic No. | | 12
IIB | | Ho
67
(252)
Es | 164 93 | 204.38
T1
81 | 114.82
In
49 | 69.723
Ga
31 | 26.982
Al
13 | 5 B 10.811 | | 13
ma | | Er 68 (257) Fm 100 | 167.26 | 207.2
Pb
82 | 118.71
Sn
50 | 72.61
Ge
32 | 28.086
Si
14 | 12.011
C | | IVA | | Tm
69
(258)
Md
101 | 168.93 | 208.98
Bi | 121.75
Sb
51 | 74.922
As
33 | 30.974
P
15 | 14.007
×4 N | | 15
VA: | | Yb
70
(259)
No
102 | 173.04 | (209)
Po
84 | Te 52 | 78.96
Se | 32.06
S | 0 | | VIA | | Lu
71
(260)
Lr
103 | 174.97 | (210)
At
85 | 126.90
I
53 | 79.904
Br
35 | 35,453
CI
17 | 18.998
FF | | 17
VIIA | | | | Rn
86 | Xe 54 | Kr 36 | 39.948
Ar
18 | Ne
10 | #.003
He
2 | VIIIA | () indicates the mass number of the isotope with the longest half-life.