UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2012

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS.

EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

A \$4.5

- (a) (i) Assuming that the 18-electron rule applies, identify the third-row transition metal:
 - (1) $[(\eta^3-C_3Ph_3)(\eta^4-C_4H_4)M(NH_3)_2]^+$
 - (2) $[(\eta^5-C_5H_5)M(CO)_3]_2$ (assume single M-M bond)
 - (3) $M(CO)_4Br(\equiv CPh)$
 - (ii) What charge, z, would be necessary for $[(\eta^6-C_6H_6)_2Os]^z$ to obey the 18-electron rule? [4]
- (b) If CO is a two electron donor and NO is a three electron donor, what are the possible formulae of the stable 18 electron Mo⁰ and Ru⁰ compounds containing just NO and/or CO? [5]
- (c) Identify the Lewis acids and bases in the following reactions
 - (i) $BrF_3 + F^- \rightarrow BrF_4^-$
 - (ii) $KH + H_2O \rightarrow KOH + H_2$ [4]
- (d) (i) Complex A, $Ir(PPh_3)_2(Cl)_2(COCH_2Ph)$ [$v(CO) = 1670 \text{ cm}^{-1}$] rearranges cleanly to the isomeric compound B [$v(CO) = 2040 \text{ cm}^{-1}$] at 30 °C in benzene. Draw a possible structure for B.

$$Ir(PPh_3)_2(Cl)_2(COCH_2Ph) \xrightarrow{C_6H_6/30^{\circ}C} \mathbf{B}$$
 [4]

- (ii) Suggest products in the following reactions:
 - (1) excess FeCl₃ with $(\eta^5-C_5H_5)_2$ Fe
 - (2) $(\eta^5-C_5H_5)_2$ Fe with PhC(O)Cl in the presence of AlCl₃
 - (3) $(\eta^5-C_5H_5)_2$ Fe with toluene in the presence of Al and AlCl₃
 - (4) $(\eta^5-C_5H_5)Fe(CO)_2Cl$ with Na[Co(CO)₄] [8]

QUESTION TWO

- (a) Explain the following:
 - (i) $[Ti(CH_2Ph)_4]$ does not undergo β -H elimination.
 - (ii) The separation of lanthanides and actinides is very difficult.
 - (iii) During ion-exchange chromatography lutetium (Lu) is separated first and lanthanum (La) the last. [6]
- (b) Of the metals Cd, Rb, Cr, Pb, Sr and Pd, which might be expected to be found in aluminosilicate minerals (silicate oxo anions) and which in sulphides? Justify your answer. [3]
- (c) The reaction of the tetrahedral cluster {(Me₃Si)₃C}₄Ga₄ with I₂ in boiling hexane results in the formation of {(Me₃Si)₃CGaI}₂ and {(Me₃Si)₃CGaI₂}₂. In each compound there is only one Ga environment. Suggest structures for these compounds and state the oxidation state of Ga in the starting material and products. [5]
- (d) Predict the structures of
 - (i) $[IF_6]^+$
 - (ii) BrF₅

[6]

- (e) (i) Determine the ground state term symbol for Tm³⁺.
 - (ii) Calculate the g-value expected for Tm³⁺.
 - (iii) Hence, calculate the effective magnetic moment, μ_{eff} , of Tm³⁺. [5]

QUESTION THREE

(a)	Sketch the structures of each of the following molecules, clearly indicating the ways in which the ligands are attached to the metal.							
	(i)	$(C_8H_8)]Mo(CO)_3$						
	(ii)	$(C_5H_5)_2$ Fe $(CO)_2$	[4]					
(b)	How are the following compounds made?							
	(i)	Fe(CO) ₅						
	(ii)	$Co_2(CO)_8$						
	(iii)	$Mn_2(CO)_{10}$	[6]					
(c)	(i) (ii)	Describe the <u>three</u> classes of aprotic solvents, citing examples of each. Hydrosilation is a useful reaction that converts an alkene into a silylalkane. Predict the product of the following general hydrosilation reaction:						
		R'-CH=CH ₂ + H-SiR ₃ \rightarrow where R = H, alkyl, aryl						
	(;;;)	SbCl ₃ may be used as a non-aqueous solvent above its melti	na noint					
	(iii)	Suggest a possible self-ionization process for this solvent.	[9]					
(d)	(i)	For the following, propose examples of isolobal organic fragment (1) A fragment isolobal with [(η ⁵ -C ₅ H ₅)Co(CO)] ⁺ (2) A fragment isolobal with Pt(CO) ₃ (3) A fragment isolobal with [(η ⁵ -C ₅ H ₅)Mn(CO) ₂] ⁻	its:					
	(ii)	Give organometallic fragments isolobal with each of the followin	g:					
	(11)	(1) CH	8.					
		(1) CH ₂ ⁺						
		(3) CH ₄	[6]					
		(3) C114	[o]					

a

QUESTION FOUR

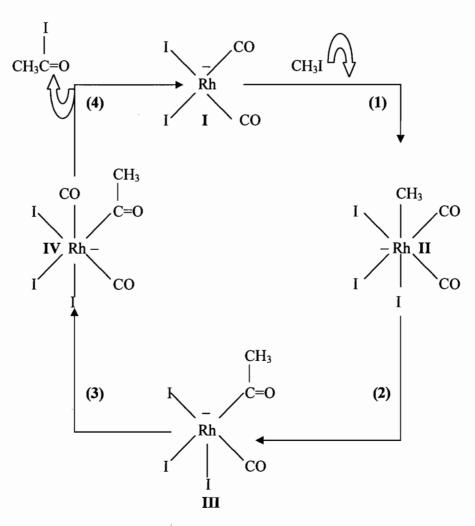
- (a) Give a description of the bonding in $[Ir(CO)_6]^{3+}$ and compare it with that in the isoelectronic compound $W(CO)_6$.
 - (ii) How would you expect the IR spectra of these species to differ in the carbonyl stretching region? [6]
- (b) Suggest reasons for the following observations:
 - (i) Although Pd(II) complexes with monodentate O-donor ligands are not as plentiful as those with P-, S- and As-donor ligands, Pd(II) forms many stable complexes with bidentate O,O'-donor ligands.
 - (ii) EDTA⁴⁻ forms very stable complexes with first-row *d*-block metal ions M^{2+} (e.g. log K = 18.62 for the complex with Ni^{2+}); where the M^{3+} ion is accessible, complexes between M^{3+} and EDTA⁴⁻ are more stable than between the corresponding M^{2+} and EDTA⁴⁻ (e.g. log K for the complex Cr^{2+} is 13.6, and for Cr^{3+} is 23.4).
- (c) (i) Explain why the spin-only formula cannot be used to describe the magnetic properties of lanthanide (Ln) ions?
 - (ii) Suggest (giving equations) how the following species behave in H₂SO₄:
 - (1) H_2O
 - (2) NH₃
 - (3) HCO₂H (given that it decomposes)

[8]

- (d) What type of reaction is the following, and by what mechanism does it occur? $Mn(CO)_5CH_3 + CO \rightarrow Mn(CO)_5(COCH_3)$ [4]
- (e) Using the cluster valence electron (CVE) count suggest the metal cage framework adopted by each of the following clusters:
 - (i) $Os_5(CO)_{16}$
 - (ii) HRu₆(CO)₁₇B
 - (iii) $Co_3(CO)_9Ni(\eta^5-C_5H_5)$

[3]

QUESTION FIVE

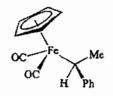

- (a) Using Polyhedral Skeletal Electron Pair Theory (PSEPT) predict the metal core structures of the following clusters:
 - (i) $[H_2Ru_6(CO)_{18}]$
 - (ii) $[Os_6(CO)_{18}]$
 - (ii) $[H_2Ru_8(CO)_{21}]^2$

[9]

- (b) The following is a list of reaction classes which encompasses the majority of the transformations of organometallic compounds:
 - A: Ligand substitution or dissociation
 - B: Oxidative addition
 - C: Reductive elimination
 - D: Migratory insertion

Now consider the catalytic cycle of reactions which are known to occur in the Monsanto acetic acid process in which methanol combines with CO to form acetic acid:

$$\text{CH}_3\text{OH} + \text{CO} \xrightarrow{\text{Rh catalyst}} \text{CH}_3\text{COOH}.$$



The steps in this cycle are labelled (1), (2), (3), and (4); the intermediate complexes are labelled I, II, III, and IV.

- (i) Name the reaction steps corresponding to (1), (2), (3), and (4).
- (ii) Determine the formal oxidation state and d electron configuration of the central metal (i.e. Mo(II) d^4) for each intermediate complexes I, II, III, and IV.
- (iii) Identify coordinatively unsaturated ("16-electron") complexes. [10]

. . .

(c) (i) Explain why the following compound does not undergo β -H elimination:

(ii) Complete the following scheme, inserting the missing nuclides and mode of decay:

$${}^{238}_{92}U \xrightarrow{}^{\frac{1}{0}n} ? \xrightarrow{-\beta} ? \xrightarrow{}^{\gamma} {}^{239}_{94}Pu$$
 [6]

QUESTION SIX

- (a) When dichlorodimethylsilane, $(CH_3)_2SiCl_2$, is treated with alkali metals in tetrahydrofuran, THF, the main product X is a crystalline solid of composition, C, 41.4%; H, 10.3%; Si, 48.3%, and molecular weight 290. The proton NMR spectrum of X measured in benzene consists of a single band. Suggest structure for X.
- (b) **M** is a First Transition Series element. It forms a carbonyl **F** of empirical formula M(CO)₅ which reacts with sodium amalgam, Na/Hg in tetrahydrofuran, THF to give a solution **G**. Treatment of **G** with 3-chloro-1-propene, CH₂=CHCH₂Cl gives a compound **H** of molecular formula C₈H₅H₅M. The infrared spectrum of **H** shows carbonyl stretching bands between 2110 and 2004 cm⁻¹, the ¹H NMR spectrum of **H** indicates protons in *four* chemically distinct environments. On heating H to 100 °C one mole of carbon monoxide, CO is eliminated to give **I**, C₇H₅O₄M [v_{CO} between 2110 and 1950 cm⁻¹]. The ¹H NMR spectrum of **I** indicates protons in *three* chemically distinct environments.
 - (i) Identify the metal M.
 - (ii) Propose and draw structures for the compounds F, H and I and for the species present in solution G.
 - (iii) Interpret the ¹H NMR features of H and I.
 - (iv) Discuss the bonding of the organic ligand to M in compound I. [8]
- (c) It is believed that the catalytic role of organometallic complexes in effecting organic reactions may be understood in terms of successive steps generating 16-and 18-electron complexes from 18- and 16-electron molecules, respectively. Thus, the "hydroformylation" of olefins below is catalysed by HCo(CO)₄ derived from Co₂(CO)₈.

$$CH_2=CHR + H_2 + CO \rightarrow RCH_2CH_2CHO$$

- (i) Outline the steps of the catalytic cycle.
- (ii) Identify each cobalt-containing species as a 16- or 18-electron molecule
- (iii) Kinetic studies indicate that the hydroformylation reaction is enhanced by an increase in H₂ pressure and inhibited by an increase in CO pressure. How is the mechanism in your cycle above consistent with these observations?
- (d) The iron atom in Fe(CO)₅ is a weak Lewis base. However, replacement of a CO ligand with a phosphine to give, for example, Fe(CO)₄(PPh₃) causes the metal basicity to be enhanced. Why should this be the case? [3]

PERIODIC TABLE OF ELEMENTS

* ‡	7	6	Un	4	w	2	-	PERIODS
*Lanthanide Series **Actinide Series	Fr 87	132.91 Cs 55	85.468 R.b 37	39.098 K	22.990 Na 11	6.941 Li 3	1.008 H	IA 1
de Series e Series	Ra 88	137.33 Ba 56	87.62 Sr 38	40.078 (Ca 20	24.305 Mg 12	9.012 Be 4	. ,	IIA
	**Ac	138.91 *La 57	88.906 Y 39	44.956 Sc 21				3
Ce 58 232.04 Th 90	(201) Rf 104	178.49 Hf 72	91.224 Zr 40	47.88 Ti 22	· · · .			IVB
Pr 59 231.04 Pa 91	140 01	180.95 Ta 73	92.906 Nb 41	50.942 V 23			Š	VB
Nd 60 238.03 U 92	Unh 106	183.85 W 74	95.94 Mo 42	51.996 Cr. 24	TRAN			VIB VIB
Pm 61 237.05 Np 93	Uns 107	186.21 Re 75	98.907 Tc 43	54.938 Mn 25	TRANSITION ELEMENTS		•	7 VIIB
Sm 62 (244) Pu 94	Uno 108	190.2 Os	101.07 Ru 44	55.847 Fe 26	Wata			8
Eu 63 (243) Am 95	Une 109	192,22 14	102.91 Rth 45	· · · · ·	ENTS		-	GROUPS 9 VIIIB
Gd 1, 64 (247) Cm 96	Uun 110	195.08 Pt 78	106.42 Pd ·	58.69 Ni 28	· ·			10
17b 65 65 Bk 97	158 93 •••••••	196.97 Au 79	107.87 Ag 47	63.546 Cu 29		Atomi Syr Atom		B 11
Dy 66 (251) Cr 98	162 50	200.59 Hg 80	112.41 Cd 48	65.39 Zn 30		Atomic mass Symbol Atomic No.		12 IIB
Ho 67 (252) Es	164 93	204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 Al 13	5 B 10.811		13 ma
Er 68 (257) Fm 100	167.26	207.2 Pb 82	118.71 Sn 50	72.61 Ge 32	28.086 Si 14	12.011 C		IVA
Tm 69 (258) Md 101	168.93	208.98 Bi	121.75 Sb 51	74.922 As 33	30.974 P 15	14.007 ×4 N		15 VA:
Yb 70 (259) No 102	173.04	(209) Po 84	Te 52	78.96 Se	32.06 S	0		VIA
Lu 71 (260) Lr 103	174.97	(210) At 85	126.90 I 53	79.904 Br 35	35,453 CI 17	18.998 FF		17 VIIA
		Rn 86	Xe 54	Kr 36	39.948 Ar 18	Ne 10	#.003 He 2	VIIIA

() indicates the mass number of the isotope with the longest half-life.