UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2010/2011

TITLE OF PAPER:

BIO-INORGANIC CHEMISTRY

COURSE NUMBER:

C617

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

ANSWER ALL FOUR (4) QUESTIONS.

EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

- (a) Transition metal ions are found in living organisms. Indicate which transition metals have a role in biological systems and briefly describe the biological functions of <u>five</u> of these metals. [10]
- (b) Write ionic equations to show how serine acts as a buffer against the following added ions:
 - (i) OH
 - (ii) H_3O^+

[2]

$$H_3N^+$$
 — CH — COO OH OH Serine

- (c) (i) Write appropriate equations to describe the reactions that each of the following enzymes catalyse:
 - (1) Carbonic anhydrase
 - (2) Carboxypeptidase
 - (ii) The mechanism of action of carbonic anhydrase is best described in terms of a **Zn-hydroxide mechanism**. Give the mechanistic cycle of carbonic anhydrase indicating all the steps involved. [7]
- (d) (i) What is the function of the metallo-biomolecule hemerythrin?
 - (ii) Identify the metal that is at the active centre of this molecule.
 - (iii) Describe the essential features of the structure of this molecule.
 - (iv) Describe the essential steps in the mechanism of the function of this molecule. [6]

QUESTION TWO

- (a) Describe the structure of any calcium-containing metallo-biomolecule. [3]
- (b) (i) Describe the essential details of the structure of Vit B_{12} .
 - (ii) How do Vit B_{12} , Vit B_{12r} and Vit B_{12s} differ?
 - (iii) Give the functions, deficiencies and sources of Vit B₁₂. [13]
- (c) Discuss the following topics:
 - (i) Cancer treatment
 - (ii) Biomineralization
 - (iii) Iron proteins as sensors

[9]

QUESTION THREE

(a)		ibe briefly how the biological roles of the alkali metals s sium differ from those of the alkaline earth metals magnesium and	
(b)	(i) (ii) (iii) (iv)	Draw the basic structure of the heme molecule in myoglobin. Describe a molecule of haemoglobin. Explain how the attachment of an O ₂ molecule to the first haemoglobin assists in activating the whole tetramer in the acquimolecules of oxygen. Describe the tense (T) and relaxed (R) conformations of haemoglobins.	isition of 4
			[10]
(c)	(i) (ii)	a brief description of the following: isoelectric point peptide bond	.
	(iii)	apoprotein	[3]
(d)	typica	proteins can act as transcription factors and contain so-called zitly involving the binding of zinc to histidine and cysteine amins. With the aid of structural diagrams describe the zinc sitens.	o acid-side
QUI	ESTIO	N FOUR .	
(a)	Expla	in the following terms:	
	(i) (ii)	the Bohr effect heme protein	[4]
(b)		ibe briefly, giving one example of each, the active sites of her allow them to: bind dioxygen reversibly.	ne proteins
	(ii)	insert oxygen into substrates.	[6]
(c)	(i) (ii)	What role does Mg play in the functioning of chlorophyll? Which other metal (s) are involved in photosynthesis in the funchlorophyll?	ctioning of
	(iii)	Chlorophyll has an absorption maximum at about 660 nm. Ca energy available from a photon light at this wavelength.	alculate the
	(iv) (v)	What electron transfer systems are used in photosynthesis? Describe the chemical processes that occur during the phoprocess.	tosynthesis [9]
(d)	(i) (ii)	What do you understand by 'modelling' of bio-molecules? Explain how cobalt complexes have provided the best general acting as helpful O ₂ binding model systems.	picture of

General data and fundamental constants

Quantity	Symbol	Value							
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹							
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C							
Faraday constant	$F = N_A e$	9.6485 X 10⁴ C mol⁻¹							
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹							
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹							
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹							
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹							
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s							
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s							
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹							
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg							
Mass									
electron	m_{e}	9.109 39 X 10 ⁻³¹ Kg							
proton	m_{p}	1.672 62 X 10 ⁻²⁷ Kg							
neutron	$\mathbf{m}_{\mathbf{s}}$	1.674 93 X 10 ⁻²⁷ Kg							
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹							
	4πε _ο	$1.112 65 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$							
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$							
		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$							
Magneton									
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹							
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹							
g value	g _e	2.002 32							
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m							
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³							
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹							
Standard acceleration		,							
of free fall	g	9.806 65 m s ⁻²							
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²							

Conversion factors

1 cal 1 eV	=	•	joules (. 2 X 10 ⁻¹	,	1 erg 1 eV/n		1 X 10 96 485	r ⁷ J 5 kJ mol	-1		
Prefixes		femto	pico	n nano 10 ⁻⁹	micro	milli	centi	deci	kilo		G giga 10°

PERIODIC TABLE OF ELEMENTS

* 1 *				7			6			IJ			4			ယ			2			—		PERIODS		
**Actinide Series	ınthanic		87	Fr	223	55	Cs	132.91	37	Rb	85.468	19	×	39.098	11	Na	22.990	3	Li	6.941	1	Н	1.008	IA	,	
e Series	*Lanthanide Series		88	Ra	226.03	56	Ва	137.33	38	Sr	87.62	20	Ca	40.078	12	Mg	24.305	4	Ве	9.012				IIA	2	
	4 2		89	**Ac	(227)	57	*La	138.91	39	¥	88.906	21	&	44.956										IIIB	ω	
232.04 Th 90	Ce 58:	140.12	104	Rf	(261)	72	Hſ	178.49	40	Zr	91.224	22	<u></u>	47.88										IVB	4	
231.04 Pa 91	P r 59	140.91	105	Ha	(262)	73	Ta	180.95	41	S	92.906	23	<	50.942										۷В	S	
238.03 U 92	Nd	144.24	106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Ç	51.996		TRAN				٠				VIB	6	
237.05 Np 93	Pm 61	(145)	107	Uns	(262)	75	Re	186.21	43	Tc	98.907	25	Mn	54.938	•	TRANSITION ELEMENTS								VIIB	7	
(244) Pu 94	Sm 62	150.36	108	Uno	(265)	76	0 <u>s</u>	190.2	44	Ru	101.07	26	Fe	55.847		ELEM									∞	ଦ
(243) Am 95	Eu 63	151.96	109	Une	(266)	77	Ţ	192.22	45	R.	102.91	27	C ₀	58.933		ENTS								VIIIB	9	GROUPS
(247) Cm 96	Gd 64	157.25	110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	Z	58.69											10	
(247) Bk 97	Tb 65	158.93				79	Au	196.97	47	Ag	107.87	29	Cu	63.546				Atom	Syn	Atomi				Œ	Ξ	
(251) Cf 98	Dy 66	162.50				80	Hg	200.59	48	Cd	112.41	30	Zn	65.39				Atomic No.	Symbol -	Atomic mass -				IIB	12	
(252) Es 99	Ho 67	164.93				81	11	204.38	49	In	114.82	31	Ga	69.723	13	A	26.982	25	B	₩0.811				ША	13	
(257) Fm 100	Er:	167.26				82	Pb	207.2	50	Sn	118.71	32	ଫୁ	72.61	14	Si	28.086	6	C	12.011				IVA	14	
(258) Md 101	Tm 69	168.93				83	Bi	208.98	51	Sb	121.75	33	As	74.922	15	P	30.974	7	Z	14.007				VA	15	
(259) No 102	Yb	173.04				84	Po	(209)	52	Te	127.60	34	Se	78.96	16	S	32.06	*	0	15.999				VΙΑ	16	
(260) Lr 103	Lu 71	174.97				85	At	(210)	53	_	126.90	35	Br	79.904	17	Ω	35.453	9	ক্ষ	18.998				VIIA	17	
						86	Rn	(222)	54	Xe	131.29	36	K.	83.80	18	Ar	39.948	10	Ne	20.180	2	He	4.003	VIIIA	18	

() indicates the mass number of the isotope with the longest half-life.