UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2010/11

TITLE OF PAPER:

SEPARATION METHODS

COURSE NUMBER:

C611

TIME ALLOWED:

THREE(3) HOURS

INSTRUCTIONS:

ANSWER ANY FOUR

QUESTIONS. EACH QUESTION

CARRIES 25 MARKS.

A periodic table and other useful data have been provided with this paper.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

1

Question 1(25 marks)

- (a) For the extraction of a weak acid, HB into an organic phase, the acid being monomeric and its anion being insoluble in the organic phase, employ the basic equilibria involved to:
 - (i) Obtain the expression for the distribution ratio, D, in terms of K_a, K_{DHB} and [H₃0⁺].
 - (ii) Show how a linearized form of the expression for D above can be used in evaluating the values of K_a and K_{DHB} graphically.

(3)

- (i) The distribution coefficient, K_D, of an organic compound between water and an organic solvent is 18.0. If 100 mL of an aqueous solution of the compound, buffered at pH 6.00 is extracted three times with 50mL of the organic solvent, calculate the percentage remaining in the aqueous phase (K_a = 2.0 x 10⁻⁶).
 - (ii) What will be the value of D at pH 4?

(3)

(iii) Comment on the results of (i) and (ii) above.

(1)

(e) A certain metal ion Mⁿ⁺ is extracted by a chelating agent. The concentration of the chelating agent is 0.010 M and the following data are obtained:

pН	1	2	3	4	5
D	10 ⁻⁸	10 ⁻⁴	1	10 ⁴	108

From the plot of log D vs. pH obtain the values n and K (collection of constants) (7)

Question 2 (25 marks)

(a) (i). State the expression that relates the net retention volume, V_n, and the specific retention volume, V_g and define the other parameters in it.

(2)

- (ii) What are the factors that influence the value of Vg, in a solvent and what assumption is made in this respect? (3)
- (iii) Assuming an ideal behaviour, how is the net volume affected by an increase in the temperature and volatility of the solutes? (3)
- (b). A 5.00 μL sample containing aniline (C₆H₅NH₂) and anisole (C₆H₅OCH₃) together with other substances was injected into a GC. The heights for the

peaks of these two solutes in the resulting chromatogram were 4.22 (aniline) and 7.60 (anisole) chart divisions. Another 5.00 μ L sample was injected together with 0.25 μ L of pure aniline (all in the same syringe), producing aniline and anisole peak heights of 8.73 and 7.60 chart divisions. Calculate the concentration, in volume %, of the two components under the following assumptions:

- (i) The detector responds equally to both compounds. (5)
- (ii) The detector response (on a volume basis) is 1.35 times more for anisole than for aniline (4)
- (c) (i) Give the two expressions for the resolution, R_s of two adjacent peaks in a chromatogram. Account for the factors that influence its value.

(4)

(ii) Using a 2.0 m column, what height of a theoretical plate is needed to achieve a resolution of 1.0? (Given that $\alpha = 1.05$, and k' = 0.5)

(4)

Question 3 (25 marks)

(a) Draw and label a schematic diagram of a gas chromotograph

(4)

- (b) For the sample inlet system of the GC
 - (i) Draw and label a schematic diagram of a flash vapourizer injection port

(3)

- (ii) Discuss the effect of injection port temperature on the resolution of a mixture (4)
- (iii) What measures should be taken, during sample preparation and injection, to ensure accuracy of data and sample preservation (4)
- (c) Summarize the ideal features of the solid support and the immobilized liquid (stationary) phase of a gas chromotograph column

(5)

(d) A sample containing only the ortho, meta and para isomers of cresol was analysed by the GC. The chromatogram had three peaks with integrated peak areas of 24.6, 30.8, and 9.3 for the ortho, meta and para isomers respectively. If the detector responds equally to the isomers, calculate the percentage of each of the isomers in the sample (5)

Question 4(25 marks).

(a) Discuss the factors that influence the number of theoretical plates of a GC column, stating specifically how N is affected in each case.

(3)

- (b) Using the Van Deemter equation, discuss the three major factors that cause band broadening of a GC column. (7)
- (c) What are the advantages of open tubular columns over packed columns in GC? (3)
- (d) Identical portions of a substance were chromatographed on a 100 m column at the following velocities:

Sample	Flow Velocity	Retention time, t _r	Peak width at half
	(cms ⁻¹)	(s)	height, w ^{1/2} (s)
1	7.0	625	7.9
2	10.0	438	5.2
3	15.0	292	3.2
4	25.0	175	1.9
5	40.0	110	1.2
6	60.0	73	0.8
7	80.0	61	0.7

With the aid of a Van Deemter plot;

- (i) Determine the optimum flow velocity.
- (ii) Calculate N, the number of theoretical plates at optimum flow velocity. (12)

Question 5(25 marks)

- (a) Define the following terms and discuss the factors that influence their values:
 - (i) Electrophoretic mobility.
 - (ii) Electroosmotic flow velocity.

(6)

(b) Give a brief account of the principles of capillary zone electrophoresis (CZE). What is its main limitation and how is it overcome by the micelar electrokinetic chromatography (MEKC)? (7)

- (c) Discuss the efficiency and solute resolution of capillary electrophoresis, indicating the parameters that influence them. (6)
- (d) CZE was employed for the analysis of N0₃ in aquarium water, using 10₄ as an internal standard. Standard solutions of 30.0 ppm N0₃ and 20.0 ppm of 10₄ gave peak heights (arbitrary units), of 190.0 and 200.2 respectively. A 2.50 mL water sample from an aquarium was transferred into a 250.0 mL volumetric flask and then diluted to volume after adding sufficient internal standard to make its concentration 10.00 ppm. Analysis gave signals of 29.2 and 105.8 N0₃ and 10₄, respectively. Estimate the concentration of N0₃ in the aquarium sample in ppm.

(6)

Question 6 (25 marks)

(a). Describe the basic principles of 'Size Exclusion Chromatography', citing any feature differentiating it from the other HPLC techniques.

(5)

- (b). Define the terms: 'The Exclusion Limit' and 'The Inclusion or Permeation Limit'. Illustrate the two on a single diagram. (5)
- (c). Give three advantages, one disadvantage and one application of 'Size Exclusion Chromatography'. (5)
- (d). What is a supercritical fluid mobile phase? Illustrate its meaning with the aid of a phase diagram and give one common example.

(4)

(e). The size exclusion chromatography was used to analyze a series of polyvinylpyridine standard of varying molecular weights. The data obtained are tabulated below:

Formula	100,000	20,000	600,000	3,000	Unknown
Weight					
Retention	7.98	9.30	6.42	10.94	8.45
Vol. (mL)					

- (i). Calculate the 'Formula Weight' for the unknown.
- (ii). What is the retention volume for a polyvinylpyridine with F.W. = 80,000? (6)

PERIODIC TABLE OF ELEMENTS

*	* L		•	7		6	`		٤	л		•	4			ယ			2		•	-		PERIODS		
Actinid	anthani		87	Fr	100	χ (<u>ر</u>	132.91	37	고 -	85.468	19	≍	39.098	=	Z	22.990	u	. Li	6.941	_	=	1.008	>	-	
**Actinide Series	*Lanthanide Series	•	88	Ra	226.03	56 }	ವ	137.33	ა 8	Sr	87.62	20	Ca	40.078	12.	Mg	24.305	4	Be	9.012	4			ΛΙΙ	2	
	<u>.</u>	_	89	**Ac	(227)	57	*La	138.91	39	~	88.906	21	Sc	44.956							,			IIIB	u	
232.04 Th 90	Cc 28	1 0 10	104	R	(261)	72	H	178.49	40	Zr	91.224	22	1	47.88										IVI	4	
231.04 Pa 91	Pr 59	10.01	105	Ha '	(262)	73))	180.95	=	Z.	92.906	23	<	50.942										VΒ	.5	
238.03 U 92	o Nd	144 24	106	Unh	(263)	74	*	183.85	42	Mo.	95.94	24	Ç	51.996		TRAN	•				٠.			UIV	6	
237.05 Np 93	Pm 61	(145)	107	Uns	(262)	75	₽c	186.21	3	Te	98.907	25	Mn	54.938		TRANSITION ELEMENTS								VIIB	7	
(244) Pu 94	Sm 62	150.36	801	Uno	(265)	76	၀ွ	190.2	4	Ru	101.07	26	l'e	55.847		ELEM									8	GI
(243) Am 95	Eu 63	151.96	109	Une	(266)	77	Ţ.	192.22	45	Rh	102.91	27	C	58.933		ENTS								VIIIB	9	GROUPS
(247) Cm 96	Gd 64	157.25	110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	2	58.69			•								10	
(247) Bk 97	Tb 65	158.93		:		79	λu	196.97	47	3	107.87	29	<u></u>	63.546				Viole	Symbol Alemia No	Vionic				IB	=	
(251) Cf 98	Dy 66	162.50	 ;			80	Hg	200.59	48	Ca	112.41	50	10.	65.39					11	٤	-			IIB	12	
(252) F.s 99	110 67	164.93		. •		8	T	204.38	49	in	114.82	<u></u>	<u> </u>	69.723		= <u>}</u>	26.982		∀ ♥	10.01	10 871			IIIA	13	
(257) 100	68 Er	167.26	 	: •		82	Pb	207.2	2	2 2	118.71	36	3 6	72.61		<u> </u>	28.080		۷ (7.01	3			IVA	14	
(258) Md	T _m	168.93			٠.	83	5	208.98	2	200	121.75	٤	3 2	74.922		- ·	70.9/4 P		7 7	Z .	14 007			Y.A	5	
No 102	70 Yb	173.04	•			84	1.0	(209)	22.	3 6	7.00	3	2 6	8.90		ر م	20,00	33 06	∞ () 	15 000			VIA	10	
103 103	71	174.9		: ,		80	2	(210		<u>.</u>	1.02		2 5	# \\		5 9	<u>.</u>	76	٠ ·	ત્ર (200		٠.	111/		1

() indicates the mass number of the isotope with the longest half-life.

eren eren eren eren eren eren eren eren			
	The second secon		
Quantity	Symbol	Value	General data and
Speed of light	c	2.997 924 58 × 10 ⁸ m s ⁻¹	fundamental
Elamentary	·	1.602177 × 10-1°C	constants
charge			
Faraday constant	$F = eN_{\lambda}$	9.5485 × 10° C mol ⁻¹	1
Boltzmann		1 200 65 × 10-21 1 ×=1	
constant	•	- 1.380 66 × 10 ⁻²³ J K ⁻¹	-
Gas constant	$R = kN_A$	8.31451 J K ⁻¹ mol ⁻¹	
		8.205 78 × 10 ⁻²	•
		dm² atm K ⁻¹ me	al ⁻¹
		62.364 L Torr K ⁻¹ mol ⁻¹	
Planck constant	h	6.62608 × 10 ⁻²⁴ J s	•
	ñ = h/2π	$1.054^{\circ}57 \times 10^{-34} \text{ J s}$.~ .
Avogadro	N _A	$5.02214\times10^{22}\mathrm{mol}^{-1}$	
constant	•		•
Atomic mass unit	u .	$1.560 54 \times 10^{-27} \text{ kg}$	
Mass of	.	• •	
electron	<i>m</i>	9.109 29 × 10 ⁻³¹ kg	
proton	. m ₂	1.572 62 × 10 ⁻²⁷ kg	
neutron	m	1:574 93 × 10 ⁻²⁷ kg	- -
Vacuum	<u>.</u>	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	•
permeability†		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$	
Vacuum	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	·".
permittivity			
	4πε0	1.11265 × 10-10 J-1 C2 m-1	•
Sohr magneton	μ <u>.</u> = efi/2 <i>m</i> ,	9.27402 × 10-24 J T-1	•
Nuclear magneton	$\mu_{\rm N}=e\dot{n}/2m_{\rm p}$	$5.05079 \times 10^{-27} \text{J} \text{T}^{-1}$.	
Electron g	g.	2.002.32.	
value .			
Bohr radius	$\varepsilon_2 = 4\pi \varepsilon_0 \hat{n}^2/m_* \varepsilon$	5.291 77 × 10 ⁻¹¹ m	
Rydberg	$R_{*} = m_{*}e^{2}/8h^{2}c$	1.097 37 × 10⁵ cm ⁻¹	
- constant	3 (0)		
Fine structure constant	$a = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻²	
Gravitational	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻²	
constant	•		
Standard L' acceleration	g	9.806.65 m s ⁻²	
of free fall;		• • •	. t Exact (defined) values -
			(BAINIEM) 1416.27
f 4		24 لم م	C Droffuss
اهر ۴	n μ m		G Prefixes
fernto pico r	n μ m iano micro milli 10 ⁻³ 10 ⁻³ -10 ⁻³		G Prefixes iga

APPENDIX C POTENTIALS OF SELECTED HALF-REACTIONS AT 25 °C

A summary of oxidation/reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems.

Half-reaction			E° (V)
$F_2(g) + 2H^+ + 2e^-$	=	2HF	3.06
$O_3 + 2H^+ + 2e^-$	=	$O_2 + H_2O$	2.07
$S_2O_8^{2-} + 2e^-$		2SO ₄ ²⁻	2.01
$Ag^{2+} + e^{-}$	=	Ag ⁺	2.00
$H_2O_2 + 2H^+ + 2e^-$	==	2H ₂ O	1.77
$MnO_4^- + 4H^+ + 3e^-$	=	$MnO_2(s) + 2H_2O$	1.70
$Ce(IV) + e^{-}$	=	Ce(III) (in 1M HClO ₄)	1.61
H ₅ IO ₆ + H ⁺ + 2e ⁻		$10_{3}^{-} + 3H_{2}O$	1.6
Bi_2O_4 (bismuthate) + $4H^+ + 2e^-$	=	$2BiO^+ + 2H_2O$	1.59
$B_7O_3^- + 6H^+ + 5e^-$	=	$\frac{1}{2}Br_2 + 3H_2O$	1.52
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	1.51
$PbO_2 + 4H^+ + 2e^-$	=	Pb2+ + 2H ₂ O	1.455
Cl. + 2e-	=	2CI-	1.36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	1.33
$MnO_2(s) + 4H^+ + 2e^-$	=	$Mn^{2+} + 2H_2O$	1.23
$O_2(g) + 4H^+ + 4e^-$	=	2H₂O	1.229
$IO_3^- + 6H^+ + 5e^-$	=	$\frac{1}{2}I_2 + 3H_2O$	1.20
$Br_2(l) + 2e^-$	_	2Br	1.065
IC12 + e-		$\frac{1}{2}I_2 + 2CI^-$	1.06
$VO_2^+ + 2H^+ + e^-$	=	VO ²⁺ + H ₂ O	1.00
$HNO_2 + H^+ + e^-$	=	$NO(g) + H_2O$	1.00
NO ₃ + 3H+ + 2e-	=	$HNO_2 + H_2O$	0.94
$2Hg^{2+} + 2e^{-}$	=	Hg ₂ +	0.92
$Cu^{2+} + I^- + e^-$		Cul(s)	0.86
$Ag^+ + e^-$	=	Ag	0.799
$Hg_2^{2+} + 2e^-$	=	: 2Hg	0.79
$Fe^{3+}+e^{-}$	==	: Fe ²⁺	0.771
$O_2(g) + 2H^+ + 2e^-$		H ₂ O ₂	0.682
$2HgCl_2 + 2e^-$		$= Hg_2Cl_2(s) + 2CI^-$	0.63
$Hg_2SO_4(s) + 2e^-$		= 2Hg + SO ₄ -	0.615
$Sb_2O_5 + 6H^+ + 4e^-$		= 2SbO+ + 3H₂O	0.581
' H ₃ AsO ₄ + 2H ⁺ + 2e ⁻		= HAsO₂ + 2H₂O	0.559
$I_3^- + 2e^-$	=	= 3I ⁻ -	0.545
$Cu^+ + e^-$		= Cu	0.52
$VO^{2+} + 2H^{+} + e^{-}$	=	= V ³⁺ + H ₂ O	0.337
$Fe(CN)_6^{3-} + e^-$		$= Fe(CN)_6^{4-}$	0.36
$Cu^{2+} + 2e^{-}$		= Cu	0.337
$UO_2^{2+} + 4H^+ + 2\epsilon^-$. =	$= U^{2+} + 2H_2O$	0.334
			(continued)

AP	PEN	YIO!X	C	(continued)
~		1010	•	(CONTINUES)

Half-reaction	•	E° (V)
Hg ₂ Cl ₂ (s) + 2e ⁻	= 2Hg + 2Cl ⁻	0.2676
$BiO^{+} + 2H^{+} + 3e^{-}$	$= Bi + H_2O$	0.32
$AgCI(s) + e^{-}$	= Ag + Cl	0.2222
$SbO^+ + 2H^+ + 3e^-$	$= Sb + H_2O$	0.212
$CuCl_3^{2-} + e^-$	= Cu + 3Cl	0.178
$SO_4^{2-} + 4H^+ + 2e^-$	$= SO_2(\bar{aq}) \div 2H_2O$	0.17
Sn ²⁺ + 2e ⁻	$= Sn^{2+}$	0.15
$S + 2H^+ + 2e^-$	$= H_2S(g)$	0.14
$TiO^{2+} + 2H^+ + e^-$	$= Ti^{3+} + H_2O$	0.10
$S_4O_6^{2-} + 2e^-$	$= 2S_2O_3^{2-}$	80.0
$AgBr(s) + e^{-}$	$= Ag + Br^-$;	0.071
$2H^+ + 2e^-$	= H ₂	0.0000
$Pb^{2+} + 2e^{-}$	= Pb	-0.126
$Sn^{2+} + 2e^-$	= Sn	-0.136
$AgI(s) + e^{-}$	$= Ag + I^-$	-0.152
$Mo^{3+} + 3e^-$	· = Mo ap	prox0.2
$N_2 + 5H^+ + 4e^-$	$= H_2NNH_3^+$	-0.23
$Ni^{2+} + 2e^{-}$	= Ni	-0.246
$V^{3+} + e^{-}$	$= V^{2+}$	-0.255
$Co^{2+} + 2e^{-}$	= Co	-0.277
$Ag(CN)_2^- + e^-$	$ = Ag + 2CN^{-}$	-0.31
$Cd^{2+} + 2e^{-}$	= Cd	-0.403
$Cr^{3+} + e^{-}$	= Cr ²⁺	0.41
$Fe^{2+}+2e^{-}$	= Fe	-0.440
$2CO_2 + 2H^+ + 2e^-$	$= H_2C_2O_4$	-0.49
$H_3PO_3 \div 2H^+ + 2e^-$	$= HPH_2O_2 + H_2O$	-0.50
$U^{4+} + e^{-}$	= Ω³+	-0.61
$Zn^{2+} + 2e^-$	= Zn	0.763
$Cr^{2+}+2e^-$	= Cr	-0.91
$Mn^{2+} + 2e^-$	= Mn	-1.18
$Zr^{4+} + 4e^-$	= Zr	– 1.53
$Ti^{3+} + 3e^{-}$. = Ti	– 1.63
$A1^{3+} + 3e^{-}$	= Al	-1.66
$Th^{4+} + 4e^{-}$	= Th .	– 1.90
$Mg^{2+} + 2e^{-}$	= Mg	-2.37
$La^{3+} + 3e^{-}$	= La	-2.52
$Na^+ + e^-$	= Na	-2.714
$Ca^{2+} + 2e^{-}$	= Ca	-2.87
$Sr^{2+} + 2e^{-}$	= Sr	-2.89
$K^+ + e^-$	= K	-2925
Li ⁺ + e ⁻	= Li	- 3.045

٠.,