UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2010/2011

TITLE OF PAPER : Advanced Analytical Chemistry

COURSE CODE : C404

TIME ALLOWED : Three (3) Hours.

INSTRUCTIONS : Answer any Four (4) Questions. Each

Question Carries 25 Marks

A periodic table and other useful data have been provided with this paper.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) Account for the variation in the conductances of an electrolyte and that of a metallic conductor as temperature increases. [4]
- (b) Given the following terms:
 specific conductance k, conductance, G, and cell constant, K.
 Define each of the terms and state their S.I units. Obtain an expression relating all the terms together.
- (c) Given the following table of limiting molar conductances of ions in water at 25 °C:

Cation	Li ⁺	Na ⁺	K ⁺	Rb ⁺	Mg^{2+}	Ca ²⁺	Ba ²⁺
$\Lambda_+^0/\mathrm{Scm}^2\mathrm{mol}^{-1}$	38.6	50.1	73.5	77.8	53.1	59.5	63.6

Based on the concept of ionic atmosphere in solutions, account for the variation in λ^0 values of the cations.

- (d) Suppose that 0.5 M solutions of HCl and CH₃COOH were diluted serially in several stages to 0.001 M. If the molar conductance at each stage was recorded, show a plot of the expected variation of Λ with \sqrt{c} . Offer an explanation for the expected shapes and state how any useful information can be obtained from either of the curves. [7]
- (e) During the determination of the solubility of AgCl, the specific conductance of the specially purified water used was found to be 8.1 x 10⁻⁷ Scm⁻¹ at 25 °C. Solid AgCl was added to the same water unto saturation at 25 °C and the specific conductance was 26.2 x 10⁻⁷ Scm⁻¹. Calculate the solubility product of AgCl. [5]

$$(\lambda_{Ag^{+}}^{0} = 61.9, and \lambda_{CI^{-}}^{0} = 76.4 \text{ Scm}^{2}\text{mol}^{-1})$$

Question 2 (25 marks)

(a)	Give two advantages of electrochemical methods of analysis.	[2]
(b)	Distinguish between the following terms: (i) A galvanic cell and an electrolytic cell (ii) A faradaic and a non-faradaic process, (iii) A chemically reversible and an irreversible cell.	[6]
(c)	Using a specific cell set up and reaction as illustration, show how a galvanic cell can be converted into an electrolytic cell.	[5]
(d)	Given the following cell: $ \begin{aligned} &\text{Cu} \text{Cu}(\text{NO}_3)_2(0.2\text{M}) \text{Fe}(\text{NO}_3)(0.05\text{M}) \text{Fe}} \\ &\text{(i)} \text{Write the cell reaction} \\ &\text{(ii)} \text{Calculate the cell potential} \\ &\text{(iii)} \text{Indicate the polarities of the electrode} \\ &\text{(iv)} \text{Give the direction of spontaneous reaction} \\ &\text{(v)} \text{Calculate the } \Delta G^0 \text{ and } K \end{aligned} $ $ \begin{aligned} &\text{(Cu}^{2^+} + 2e^- = \text{Cu}(s)) & \text{: } E^0 = 0.337\text{V} \\ &\text{F}^{2^+} + 2e^- = \text{Fe}(s) & \text{: } E^0 = -0.44\text{V} \text{)} \end{aligned} $	[12]
Ques	stion 3 (25 marks)	
(a).	What is an indicator electrode?	[1]
(b)	Distinguish between an indicator electrode of the first kind and an indicator electrode second kind. Give an example and state the expression for the cell voltage in case.	
(c)	Some metals cannot be used as indicator electrodes of the first kind. Account for observation and give four examples of such metals.	this [5]
(d).	For the following reaction:	
	$CuSCN(s) + e^{-} = Cu(s) + SCN^{-}$	
(i)	Calculate the standard potential for this reaction.	
	(cont	inued)

- (ii) Write the line notation for the cell in which the Cu indicator electrode is the cathode and a SCE as the anode that could be used fo the determination of SCN.
- (iii) Assuming that there is no liquid junction potential, obtain an expression relating the observed potential in (ii) to pSCN.
- (iv) Using the cell in (ii), calculate the pSCN for a solution saturated with CuSCN when the resulting cell potential is 0.076V. [12]

$$(K_{sp} = 4.8 \times 10^{-15} \text{ for CuSCN})$$

Question 4 (25 marks)

(a) State four favourable features of potentiometric titration.

[2]

- (b) (i) Explain the term: concentration polarization
 - (ii) How can it be minimized during an electrogravimetric analysis?
 - (iii) Demonstrate graphically the effects of concentration polarization on the current potential behaviour of galvanic and electrolytic cells. [9]
- (c) A Na₂PtCl₆ sample weighing 247.90 mg was being analyzed for its chloride content. The Pt(IV) was reduced to Pt metal using hydrazine sulphate. The liberated Cl⁻ was titrated potentiometrically with 0.2314 M AgNO₃ using a Ag indicator electrode and a SCE reference electrode. The data obtained are tabulated below:

Vol. of AgNO ₃ (ml)	E vs SCE (V)
00.00	0.072
13.00	0.140
13.20	0.14
13.40	0.152
13.60	0.160
13.80	0.172
14.80	0.196
14.20	0.290
14.40	0.326
14.60	0.340

(continued)

- (i) Employing any of the conventional methods for 'end point determination', estimate the end point of this titration. [7]
- (ii) Calculate the apparent percent of the Cl in the sample, and the expected percent in a pure sample of this compound. [7]

Question 5 (25 marks)

(a) Define the 'selectivity coefficient' of an Ion Selective Electrode (ISE). Suppose that an ISE designed for measuring A⁺ has the following selectivity coefficients for ions B, C, D, & E

$$K_{A^+,B^+} = 0.01$$
: $K_{A^+,C^+} = 0.08$: $K_{A^+,D^+} = 0.04$; $K_{A^+,E^+} = 0.1$

Arrange the ions in an increasing order of the electrode's sensitivity to them. How is this interpreted in terms of their relative interference with the ion A⁺, using this electrode?

[4]

- (b) If you were to determine H⁺, Na⁺, and K⁺ in separate solutions, which of the following glass electrodes would you employ for the measurement of each of them respectively?: the pH type, the cation sensitive type or the sodium sensitive type. Why? [4]
- (c) With a diagrammatic support, describe the construction, the working principles and the potential of a Ca²⁺ ion selective electrode. Give two interfering ions of this electrode. [7]
- (d) When a Na⁺- I.S.E with a selectivity coefficient, $k_{Na}^{+}_{,H}^{+} = 36$, was immersed in 1.00 x 10⁻³ M NaCl at a pH 8, a potential of -38 mV (vs)SCE was recorded. Assuming unit activity coefficients and that $\beta = 1$, calculate the potential when
 - (i) The electrode was immersed in 5.00 x 10⁻³ M NaCl at a pH 8 [4]
 - (ii) [NaCl] = $1.00 \times 10^{-3} \text{ M at pH } 3.87$

[4]

From the results obtained in (i) & (ii), comment on the importance of pH in the use of a Na⁺ ISE. [2]

Question 6 (25 marks)

(a) Disiniguish octacen	(a)	Distingui	ish between
-------------------------	-----	-----------	-------------

- (i) Voltammetry and coulometry.
- (ii) Voltammetry and potentiometry

[4]

- (b) For the dropping mercury electrode (DME), polarographic method of analysis:
 - (i) Discuss very briefly its salient features and working principles. [7]
 - (ii) Account for the use of a supporting electrolyte when using it for the analysis of a sample. Give two examples of such electrolytes. [3]
 - (iii) Why should the concentration of the supporting electrolyte be at least 1000 fold higher than that of the analyte ion? [2]
- (c) (i) State the Ilkovic equation and define all the terms in it. [3]
 - (ii) A TeO₃²⁻ sample was reduced polarographically in a 1.000M NaOH solution. The DME used for the analysis has the following parameters: m = 1.50 mg/s, $I_d = 61.9 \mu\text{A}$, t = 3.15 s, $D = 0.75 \times 10^{-5} \text{ cm}^2\text{s}^{-1}$, for a $4.0 \times 10^{-3} \text{ M}$ tellurium ion solution. What is the oxidation state to which the tellurium has been reduced during this analysis?

PERIODIC TABLE OF ELEMENTS

		*		,T*				7		ć	^		,	л.			A		ţ	د ،			2		-	-	PERIODS		
		**Actinide Series		anthani			87	Fr	223	55	င္ဟ	132.91	37	R.b	85.468	19	≍	39.098	11	Z	22.990	w	·	6.941	_ ;	1.006	IA	_	
		e Series	i	*Lanthanide Series	•		88	Ra	226.03	56	Ba	137.33	38	Sr	87.62	20	Ca	40.078	12,	Me	24.305	4	Be	9.012	.		VII	2	
F				<i>-</i>			89	** Ac	(227)	57	*Ln	138.91	39	×	88.906	21	Sc	44.956						-			IIIB	3	
	90	232.04 Th	58	Ce	140.12		104	12.	(261)	72	H	178.49	40	Zr	91.224	22	ï	47.88									IVB	4	
() indi	91	231.04 Pa	59	Pr	140.91		105	Ha '	(262)	73		180.95	<u></u>	Ž	92.906	23	<	50.942									٧В	5	
cates the	23	238.03	60	PN	144.24		106	Unh	(263)	74	*	183,85	42	Mo.	95.94	24	Ç	51.996	1	TRAN	•				• .		VID	6	
() indicates the mass number of the isotope with	93	237.05 Nn	61	Pm	(145)		107	Uns	(262)	75	₽c	186.21	43	Te	98.907	25	Mıı	54.938		TRANSITION ELEMENTS							VIIB	7	
umber o	94	(244) Pu	62	Sm	150.36	-	108	Uno	(265)	76	og Og	190.2	44	₽	101.07	26	Fe	55.847		ELEN								8	
the iso	95	(243) Ann	63	Eu	151.96		109	Une	(266)	77	Ĭ	192.22	45	R.	102.91	27	င္ပ	58.933		ENTS							VIIIB	9	GROUPS
ope will	96	(247) Cm	64	Cd	157.25		110	Uun	(267)	78	14	195.08	46	Pd	106.42	28	Z	58.69				;						10	
the lon	97	(247) Bk	65	Tb	158.93					79	Λu	196.97	47	λg	107.87	29	Cu	63.546				Atom	Syr	Atom			113	=	
the longest half-life.	98	(25) CI	66	Dу	162.50	٠				80	Hg	200.59	48	Cd	112.41	30	Zn	65.39				Atomic No.	Symbol -	Atomic mass -			1113	12	
-life.	99	(252) IEs	67	Ho	164.93					8	1	204.38	49	In	114.82	31	G ₁	69.723	13	Δl	26,982	V	7 □	10.811			IIIA	13	
	100	(25%) Fm	80	Er	167.26		•	•		82	Pb	207.2	50	Sn	118.71	32	Ge	72.61	14	Si	28.086	0	C	. 12.011			VAL	14	
	101	P.W (8CZ)	09	Tm	168.93					83	Bi	208.98	51	Sb	121.75	33	Λs	74.922	15	ים	30.974	-	Z	14.007			٧٨	15	
	102	No (23%)	200	χb	173.04			 	•	84	Po	(209)	52 .	Te	127.60	34	Se	78.96	16	S	32,06	0	• 0	15.999			VIA	16	
	103	L1 (200	2	Lu	174.9					85	Λt	(210	2	,	126.5	35	Br	79.90	17	Ω	35.4:	,) '=	18,99			VIII/	17	

							-
						• 1	
Сu	antity	Symbol	Value		General	iata and	
Sp	eed of light	c	2.997 924 58 × 10	a m s ⁻¹	fundame	ntal	•
Éla	mentary	·	T.502777 × 10-13		constant	s	
	charge raday	5				٠.	
	constant	$F = eN_{\lambda}$	9.5485 × 10° C m	oi ⁻¹	1		,
	ltzmann .	k	1.380 66 × 10 ⁻²³	1 K-1			•
	constant	_				•	
95	s constant	$R = kN_{\perp}$	8.31451 J K ⁻¹ mo	ol ⁻¹			
•	• • • • • • • • • • • • • • • • • • • •		8.205 78 × 10 ⁻²	atm K ⁻¹ mel ⁻¹	<i>:</i>	• • • • • • • • • • • • • • • • • • • •	
	• •		62.354 L Torr K-1				
Pla	nck constant	h h	6.626 08 × 10-34		:	-	• •
		n= h/2π	$1.054^{\circ}57 \times 10^{-34}$	Js			
	ogadro constant	N _A	$6.02214\times10^{22}\mathrm{m}$	10l ⁻¹	•		
	omic mass	u	1.560 54 × 10 ⁻²⁷ 1	ka			٠٠.
	unit	*		·9 ,			
	ess of electron	m.	9.109 39 × 10 ⁻²¹	. -			
A	proton		· 1.572 52 × 10 ⁻²⁷	•			
٠ ،	neutron	- mz- - - -	1.574 93 × 10 ⁻²⁷	_			
	cuum	μ,	4x × 10-7 J s2 C-				
1	permeability†		4= × 10 ⁻⁷ T ² J ⁻¹	 m²			
· Va	cuum	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² .	• •	•		~
1	permittivity	4πε ₀	1.112 65 × 10 ⁻¹⁰ .			·····	- .
20	hr magneton	μ ₌ = efi/2m ₌	9.274 02 × 10 ⁻²⁴	_			•
No	uc!ear	μ _N = efi/2m ₂	5.050 79 × 10 ⁻²⁷	•			
	magneton						•
	ectron g value .	g.	2.002 32.	•		. •	•
30	ohr radius	$z_2 = 4\pi \varepsilon_0 \dot{n}^2/m_e \varepsilon$	5.291 77 × 10-11		• •		
	dberg constant	$R_{-} = m_{+}e^{2}/8h^{2}c$	1.097 37 × 10 ⁵ cm				
Fi	ne structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻³				
	ravitational constant	G .	6.572 59 × 10 ⁻¹¹	N m² kg-²	· ·	•	•
	andard 1		_9.806.65.m s ⁻² _	•			
	acceleration of free fall;	. 3				-	
	o. nes lent		· · · -	•	. t Exact (defined) values	-
	ת לב ז	μπ	c d k	M G	Droffice		
	· ·	~	- u .		Prefixes		

APPENDIX C POTENTIALS OF SELECTED HALF-REACTIONS AT 25 °C

A summary of oxidation/reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems.

Half-reaction			E° (V)
$F_2(g) + 2H^+ + 2e^-$	=	2HF	3.06
$O_3 + 2H^+ + 2e^-$	=	$O_2 + H_2O$	2.07
$S_2O_8^{2-} + 2e^-$	=	2SO ₄ ² -	2.01
$Ag^{2+} + e^{-}$	=	Ag ⁺	2.00
H2O2 + 2H+ + 2e-	=	2H ₂ O	1.77
$MnO_4^- + 4H^+ + 3e^-$	=	$MnO_2(s) + 2H_2O$	1.70
$Ce(IV) + e^{-}$		Ce(III) (in 1M HClO ₄)	1.61
$H_5IO_6 + H^+ + 2e^-$	=	$10_{3}^{-} + 3H_{2}O$	1.6
Bi_2O_4 (bismuthate) + $4H^+ + 2e^-$	=	2BiO+ + 2H ₂ O	1.59
$BrO_3^- + 6H^+ + 5e^-$	=	$\frac{1}{2}Br_2 + 3H_2O$	1.52
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	=	$Mn^{2+} + 4H_2O$	1.51
$PbO_2 + 4H^+ + 2e^-$	=	Pb2+ + 2H2O	1.455
$Cl_1 + 2e^-$	_	2CI-	1.36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	$2Cr^{3+} + 7H_2O$	1.33
$MnO_2(s) + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	1.23
$O_2(g) + 4H^+ + 4e^-$		2H₂O	1.229
$10_3^- + 6H^+ + 5e^-$		$\frac{1}{2}I_2 + 3H_2O$	1.20
$Br_2(l) + 2e^-$		2Br	1.065
ICI2 + e-	=	$\frac{1}{2}I_2 + 2CI^-$	1.06
$VO_2^+ + 2H^+ + e^-$	=	VO2+ + H2O	1.00
$HNO_2 + H^+ + e^-$	=	$NO(g) + H_2O$	1.00
$NO_3^- + 3H^+ + 2e^-$	=	$HNO_2 + H_2O$	0.94
$2Hg^{2+} + 2e^{-}$		Hg ₂ +	0.92
$Cu^{2+} + I^{-} + e^{-}$	=	CuI(s)	0.86
$Ag^+ + e^-$	==	Ag	0.799
$Hg_2^{2+} + 2e^-$	=	: 2Hg	0.79
Fe3+ + e-	=	: Fe ²⁺	0.771
$O_2(g) + 2H^+ + 2e^-$	-	H ₂ O ₂	0.682
2HgCl ₂ + 2e ⁻	=	= Hg2Cl2(s) + 2CI-	0.63
$Hg_2SO_4(s) + 2e^-$	=	= 2Hg + SO ₄ -	0.615
Sb ₂ O ₅ + 6H ⁺ + 4e ⁻	=	= 2SbO ⁺ + 3H₂O	0.581
$H_3AsO_4 + 2H^+ + 2e^-$	=	HAsO ₂ + 2H ₂ O	0.559
$1_3^- + 2e^-$	=	= 31".	0.545
$Cu^+ + e^-$	=	= Cu	0.52
$VO^{2+} + 2H^{+} + e^{-}$	=	= V ³⁺ + H ₂ O	0.337
$Fe(CN)_6^{3-} + e^-$	=	= Fe(CN) ₆ ⁴⁻	0.36
Cu ²⁺ + 2e ⁻	=	= Cu	0.337
$UO_{2}^{2+} + 4H^{+} + 2e^{-}$	-	= U ²⁺ + 2H ₂ O	0.334
_	•		(continued)

APPENDIX C (continued)

Half-reaction		E° (V)
$Hg_2Cl_2(s) + 2e^-$	= 2Hg + 2Cl ⁻	0.2676
$BiO^{+} + 2H^{+} + 3e^{-}$	$= Bi + H_2O$	0.32
$AgCl(s) + e^{-}$	$= Ag + Cl^{-}$	0.2222
$SbO^{+} + 2H^{+} + 3e^{-}$	$= Sb + H_2O$	0.212
CuCl3 + e-	= Cu + 3Cl	0.178
$SO_4^{2-} + 4H^+ + 2e^-$	$= SO_2(a\bar{q}) \div 2H_2O$	0.17
Sn ⁴⁺ + 2e ⁻	$= Sn^{2+}$	0.15
$S + 2H^+ + 2e^-$	$= H_2S(g)$	0.14
$TiO^{2+} + 2H^{+} + e^{-}$	$= Ti^{3+} + H_2O$	0.10
$S_4O_6^{2-} + 2e^-$	$= 2S_2O_3^{2-}$	80.0
$AgBr(s) + e^{-}$	$= Ag + Br^{-}$;	0.071
2H+ + 2e-	$= H_2$	0.0000
$Pb^{2+} + 2e^{-}$	= Pb	-0.126
$\operatorname{Sn}^{2+} + 2e^{-}$	= Sn	-0.136
$AgI(s) + e^{-}$	$= Ag + I^-$	0.152
Mo3+ + 3e-	- Mo	approx. -0.2
$N_2 + 5H^+ + 4e^-$	$= H_2NNH_3^*$	- 0.23
$Ni^{2+} + 2e^{-}$	= Ni	0.246
$V^{3+} + e^{-}$	$= V^{2+}$	-0.255
Co2+ + 2e-	= Co	-0.277
$Ag(CN)_2^- + e^-$	$= Ag + 2CN^-$	-0.31
$Cd^{2+} + 2e^{-}$	= Cd	-0.403
Cr3+ + e-	= Cr ²⁺	-0.41
$Fe^{2+} + 2e^{-}$	= Fe	- 0. 44 0
$2CO_2 + 2H^+ + 2e^-$	$= H_2C_2O_4$	-0.49
$H_3PO_3 \div 2H^+ + 2e^-$	$= HPH_2O_2 + H_2O_3$	0 -0.50
$U^{4+} + e^{-}$	$= U^{3+}$	-0.61
$Zn^{2+} + 2e^-$	= Zn	0.763
$Cr^{2+} + 2e^{-}$	= Cr	-0.91
$Mn^{2+} + 2e^-$	= 'Mn	-1.18
Zr4+ + 4e-	= Zr	-1.53
Ti ³⁺ + 3e ⁻	$=$ Ti \cdot	- 1.63
$A1^{3+} + 3e^{-}$	= Al	-1.66
$Th^{4+} + 4e^{-}$	= Th .	· - 1.90
$Mg^{2+} + 2e^{-}$	= Mg	-2.37
$La^{3+} + 3e^{-}$	= La	-2.52
$Na^+ + e^-$	= Na	-2.714
$Ca^{2+} + 2e^{-}$	= Ca	-2.87
$Sr^{2+} + 2e^-$	= Sr	-2.89
K* + e"	= K	-2.925
Li+ + e-	= Li	3.045