UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2010/11

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE **SIX** QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER **ANY FOUR** QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25marks)

- (a) What is the role of defects in adsorption on surfaces? [3]
- (b) The volume of methane, measured at STP (0°C, 1 atm), adsorbed on 1g of charcoal at 0 °C and several different pressures is

P/ cm Hg	10	20	30	40
V/cm ³	9.75	14.5	18.2	21.4

Show that the data follows the Freundlich isotherm, $\theta = c_1 P^{1/c_2}$, and determine the constants c_1 and c_2 [8]

- (c) In an experiment on the adsorption of ethene on iron it was found that the same volume of gas was desorbed in 1856 s at 873 K and 8.44 s at 1012 K.
 - (i) What is the activation energy of desorption? [6]
 - (ii) How long would it take the same amount of ethene to desorb at 298 K? at 2000 K? [8]

Question 2 (25marks)

- (a) Estimate the mean activity coefficient of CaCl₂ in a solution that is 0.020 mol kg⁻¹ NaCl(aq) and 0.035 mol kg⁻¹ CaCl₂(aq) [5]
- (b) Given that $Hg_2Cl_2(s) + 2e^- \rightarrow 2 Hg(l) + 2Cl^-(aq) E^0 = +0.27 V$ and that $\Delta_f G^0(Hg_2Cl_2,s) = -210.7 \text{ kJmol}^{-1}$, determine $\Delta_f G^0(Cl^-,aq)$. [6]
- (c) Write the appropriate half-cell reactions for the following reactions. Identify which is the cathode reaction.

(i)
$$2 \text{ Cd}(OH)_2(s) \rightarrow \text{ Cd}(s) + O_2(g) + 2H_2O(l)$$
 [2]

(ii)
$$Sn(s) + Sn^{4+}(aq) \rightarrow 2 Sn^{2+}(aq)$$
 [2]

- (d) Consider the cell Hg(1)|Hg₂SO₄(s)|FeSO₄(aq, a = 0.0100)|Fe(s) [E⁰(Fe²⁺,Fe) = -0.447 V and E⁰(Hg₂SO₄,Hg, SO₄²⁻) = 0.6125 V]
 - (i) Write the cell reaction [2]
 - (ii) Calculate the cell potential at 25°C [5]
 - (iii) Calculate the equilibrium constant for the cell reaction [3]

Question 3 (25marks)

- (a) Use the kinetic theory of gases to explain the following:
 - (i) The thermal conductivity of a perfect gas is expected to be independent of pressure.
 - (ii) The thermal conductivity of a perfect gas increases as T^{1/2} [6]
- (b) (i) The diffusion coefficient for Xe at 273 K and 1 atm is $5 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$. What is the collisional cross section of Xe?
 - (ii) The diffusion coefficient of N_2 is threefold greater than that of Xe under the same pressure and temperature conditions. What is the collisional cross section of N_2 ? (Atomic masses: Xe = 131.29 u and of $N_2 = 28.02$ u) [10]
- (c) The mobilities of H⁺, Na⁺ and Cl⁻ are given I table below:

Ion	Mobility, m ² s ⁻¹ V ⁻¹
H^{+}	3.623×10^{-7}
Na ⁺	0.519×10^{-7}
Cl	0.791 x 10 ⁻⁷

- (i) What proportion of the current is carried by the protons in a 1.00 x 10⁻³ M HCl(aq)?
- (ii) What fraction do they carry when NaCl is added to the acid so that the solution is 1.0 M in the salt? [9]

Question 4 (25marks)

- (a) Define or briefly explain what the following terms mean in kinetics
 - (i) collision cross-section
 - (ii) cage effect
 - (iii) diffusion controlled reaction
 - (iv) activation energy
 - (v) kinetic salt effect

[5]

- (b) The diffusion coefficient of I in CCl₄ is estimated to be $4.2 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ at 25 °C. Given that the radius of I is about 200 pm, calculate the rate constant k_d for $I + I \rightarrow I_2$ in CCl₄ at 25 °C. [5]
- (c) For the gas phase reaction $A + A \rightarrow A_2$, the experimental rate constant has been fitted to the Arrhenius equation with the pre-exponential factor $A = 4.07 \times 10^5 \text{ L mol}^{-1} \text{ s}^{-1}$ at 300 K and an activation energy of 65.43 kJmol⁻¹. Calculate $\Delta^{+}\text{S}$, $\Delta^{+}\text{H}$, and $\Delta^{+}\text{G}$ for the reaction. [10]

(d) At 25 °C, k = 1.55 L²mol⁻²min⁻¹ at an ionic strength of 0.0241 for a reaction in which the rate determining step involves the encounter of two singly charged cations. Use the Debye-Huckel limiting law to estimate the rate constant at zero ionic strength. [5]

Question 5 (25 marks)

- (a) The rate of formation of C in the reaction $2A+B \rightarrow 2C+3D$ is 1.0 mol $L^{-1}s^{-1}$. State the reaction rate, and the rates of formation or consumption of A, B, D.
- (b) (i) What is a half-life?
 - (ii) Derive the expression that relates the half-life to the rate constant and initial concentration for a zero order reaction. [4]
- (c) Methane is a by-product of a number of natural and industrial processes. Reaction with the hydroxyl radical, OH, is the main path by which CH₄ is removed from the lower atmosphere. The rate constants for this bimolecular gas-phase reaction have been measured over a range of temperatures of interest in atmospheric chemistry. Deduce the Arrhenius parameters, E_a and A, from the following data. [10]

T/K	295	223	218	213	206	200	195
k/10 ⁶ Lmol ⁻¹ s ⁻¹	3.55	0.494	0.452	0.379	0.295	0.241	0.217

- (d) Show that for a small perturbation the relaxation time for the reaction $A \Rightarrow B + C$ (k_f and k_r are the rate constants for the forward and reverse reactions) is given by $\tau = \{k_f + k_r([B]_{eq} + [C])\}^{-1}$. [4]
 - (ii) The measured relaxation time for a small temperature jump is 3.0 μ s. If at 25 °C the equilibrium constant for the system is 2.0 x 10⁻¹⁶, and the equilibrium concentrations of B and C are both 2.0 x 10⁻⁴ M, calculate the rate constants, k_f and k_r . [3]

Question 6 (25 marks)

- (a) Explain how the permanent dipole moment and polarizability of a molecule arise. [6]
- (b) The relative permittivity of camphor (molar mass M = 152.3 g/mol and melting point 175 °C) was measured over a range of temperatures. Use the data that was obtained and is given in the table below to calculate the dipole moment and polalarizability of camphor. [12]

Temperature	Relative	Density, ρ		
θ, °C	permittivity, ε	g cm ⁻³		
0	12.5			
20	11.4	0.99		
40	10.8	0.99		
60	10.0	0.99		
80	9.50	0.99		
100	8.90	0.99		
120	8.10	0.97		
140	7.60	0.96		
160	7.11	0.95		
200	6.21	0.91		

$$\label{eq:pm} \left[\text{Useful equation} \quad P_m = \frac{N_A}{3\epsilon_0} \left(\alpha + \frac{\mu^2}{3kT} \right) \quad \text{where } P_m = \left(\frac{\varepsilon_r - 1}{\varepsilon + 2} \right) \frac{M}{\rho} \right]$$

(c) The refractive index of CH₂I₂ is 1.732 for 656 nm light. Its density at 20 °C is 3.32 g cm⁻³. Calculate the polarizability of the molecule at this wavelength. [7]

		7	6	5	,	ω	2	Period 1		Group
89 90 91 92 93 94 95 96 97 Actinides Ac Th Pa U Np Pu Am Cm Bl 227.0 232.0 231.0 238.0 237.1 239.1 241.1 247.1 249.1	Lanthanides	87 Fir 223	1329 C3	37 Rb 85.47	39.10	11 Na 22.99	3 Li 6.94	1 H 1.008	IA	_
des	nides	88 Ra 226.0	56 Ba 137.3	38 Sr 87.62	20 Ca 40.08	12 Mg 24.31	9.01		ΙĀ	2
		103 Lr 257	71 Lu 174.9	39 Y	44.%				8	<u>.</u>
89 Ac 227.0	57 La 138.9	Unq Unq	72 Hf 178.5	40 Zr 91.22	22 Tii 47.90				IVB	4
90 Th 232.0	58 Ce 140.1	Unp	73 Ta 180.9	Nb 91.22	23 V 50.94				₩	Ų
91 Pa 231.0	59 Pr 140.9	Unh	74 W 183.8	42 Mo 95.94	24 Cr 52.01	 			¥B	c
92 U 238.0	60 Nd 144.2	107 Una	75 Re 186.2	13 Tc 98.9	25 Min 54.9	METALS			AIIIA	•
93 Np 237.1	61 Pm 146.9	Uno	76 Os	101.1	26 Fe 55.85			7		۰
94 Pu 239.1	62 Sm 150.9	Une	77 Ir 192.2	45 Rh 102.9	27 Co 58.71		METAI	NON-METALS	AIIIA	•
95 Am 241.1	63 Eu 151.3		78 Pt 195.1	46 Pd 106.4	28 Ni 58.71		METALLOIDS	ETALS		5
96 Cm 247.1	64 Gd 157.3		79 Au 196.9	47 Ag 107.9	29 Cu, 63.54		†	1	₿	
97 Bk 249.1	65 Tb 158.9		80 Hg 200.6	48 Cd 112.4	30 Zn 65.37				Ħ	;
98 Cf 251.1	66 Dy 162.5		81 T1 204.4	49 In 114.8	31 Ga 69.7	13 Al 26.9	5 B 10.81		AIII	
99 Es 254.1	67 Ho 164.9		82 Pb 207.2	50 Sn 118.7	32 Ge 72.59	14 Si 28.09	, C		IVA	7
100 Fm 257.1	68 Er 167.3		83 Bi 208.9	51 Sb 121.8	33 As 74.92				٧A	;
101 Md 258.1	69 Tm 168.9		84 Po 210	52 Te 127.6					VIA	7
102 No 255	70 Yb 173.0		85 At 210						AII	;
ध			34	74.1					VIIIA	5

THE PERIODIC TABLE OF ELEMENTS

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e '	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	·	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
	•	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	;	
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_{p}	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
· •	$4\pi\epsilon_{o}$	$1.112 65 \text{ X } 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Vacuum permeability	μ_{o}	$4\pi \text{ X } 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	- '.	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{N} = e\hbar/2m_{p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_0^2$	$1.097\ 37\ X\ 10^7\ m^{-1}$
Standard acceleration		-
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
	· _	

Conversion factors

1 cal = 1 eV =		-	joul <u>e</u> s (. 2 X 10 ⁻¹	,	1 erg 1 eV/molecule			=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹		
Prefix	xes	femto	pico	nano	μ micro 10 ⁻⁶	milli	centi	deci	kilo		G giga