UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2010/11 TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY **COURSE NUMBER: C402** TIME: THREE (3) HOURS #### **INSTRUCTIONS:** THERE ARE **SIX** QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER **ANY FOUR** QUESTIONS. A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED **GRAPH PAPER IS PROVIDED** NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED. DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR. ## Question 1 (25marks) - (a) What is the role of defects in adsorption on surfaces? [3] - (b) The volume of methane, measured at STP (0°C, 1 atm), adsorbed on 1g of charcoal at 0 °C and several different pressures is | P/ cm Hg | 10 | 20 | 30 | 40 | |-------------------|------|------|------|------| | V/cm ³ | 9.75 | 14.5 | 18.2 | 21.4 | Show that the data follows the Freundlich isotherm, $\theta = c_1 P^{1/c_2}$, and determine the constants c_1 and c_2 [8] - (c) In an experiment on the adsorption of ethene on iron it was found that the same volume of gas was desorbed in 1856 s at 873 K and 8.44 s at 1012 K. - (i) What is the activation energy of desorption? [6] - (ii) How long would it take the same amount of ethene to desorb at 298 K? at 2000 K? [8] ### **Question 2 (25marks)** - (a) Estimate the mean activity coefficient of CaCl₂ in a solution that is 0.020 mol kg⁻¹ NaCl(aq) and 0.035 mol kg⁻¹ CaCl₂(aq) [5] - (b) Given that $Hg_2Cl_2(s) + 2e^- \rightarrow 2 Hg(l) + 2Cl^-(aq) E^0 = +0.27 V$ and that $\Delta_f G^0(Hg_2Cl_2,s) = -210.7 \text{ kJmol}^{-1}$, determine $\Delta_f G^0(Cl^-,aq)$. [6] - (c) Write the appropriate half-cell reactions for the following reactions. Identify which is the cathode reaction. (i) $$2 \text{ Cd}(OH)_2(s) \rightarrow \text{ Cd}(s) + O_2(g) + 2H_2O(l)$$ [2] (ii) $$Sn(s) + Sn^{4+}(aq) \rightarrow 2 Sn^{2+}(aq)$$ [2] - (d) Consider the cell Hg(1)|Hg₂SO₄(s)|FeSO₄(aq, a = 0.0100)|Fe(s) [E⁰(Fe²⁺,Fe) = -0.447 V and E⁰(Hg₂SO₄,Hg, SO₄²⁻) = 0.6125 V] - (i) Write the cell reaction [2] - (ii) Calculate the cell potential at 25°C [5] - (iii) Calculate the equilibrium constant for the cell reaction [3] #### Question 3 (25marks) - (a) Use the kinetic theory of gases to explain the following: - (i) The thermal conductivity of a perfect gas is expected to be independent of pressure. - (ii) The thermal conductivity of a perfect gas increases as T^{1/2} [6] - (b) (i) The diffusion coefficient for Xe at 273 K and 1 atm is $5 \times 10^{-6} \text{ m}^2 \text{ s}^{-1}$. What is the collisional cross section of Xe? - (ii) The diffusion coefficient of N_2 is threefold greater than that of Xe under the same pressure and temperature conditions. What is the collisional cross section of N_2 ? (Atomic masses: Xe = 131.29 u and of $N_2 = 28.02$ u) [10] - (c) The mobilities of H⁺, Na⁺ and Cl⁻ are given I table below: | Ion | Mobility, m ² s ⁻¹ V ⁻¹ | |-----------------|--| | H^{+} | 3.623×10^{-7} | | Na ⁺ | 0.519×10^{-7} | | Cl | 0.791 x 10 ⁻⁷ | - (i) What proportion of the current is carried by the protons in a 1.00 x 10⁻³ M HCl(aq)? - (ii) What fraction do they carry when NaCl is added to the acid so that the solution is 1.0 M in the salt? [9] #### **Question 4 (25marks)** - (a) Define or briefly explain what the following terms mean in kinetics - (i) collision cross-section - (ii) cage effect - (iii) diffusion controlled reaction - (iv) activation energy - (v) kinetic salt effect [5] - (b) The diffusion coefficient of I in CCl₄ is estimated to be $4.2 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ at 25 °C. Given that the radius of I is about 200 pm, calculate the rate constant k_d for $I + I \rightarrow I_2$ in CCl₄ at 25 °C. [5] - (c) For the gas phase reaction $A + A \rightarrow A_2$, the experimental rate constant has been fitted to the Arrhenius equation with the pre-exponential factor $A = 4.07 \times 10^5 \text{ L mol}^{-1} \text{ s}^{-1}$ at 300 K and an activation energy of 65.43 kJmol⁻¹. Calculate $\Delta^{+}\text{S}$, $\Delta^{+}\text{H}$, and $\Delta^{+}\text{G}$ for the reaction. [10] (d) At 25 °C, k = 1.55 L²mol⁻²min⁻¹ at an ionic strength of 0.0241 for a reaction in which the rate determining step involves the encounter of two singly charged cations. Use the Debye-Huckel limiting law to estimate the rate constant at zero ionic strength. [5] #### Question 5 (25 marks) - (a) The rate of formation of C in the reaction $2A+B \rightarrow 2C+3D$ is 1.0 mol $L^{-1}s^{-1}$. State the reaction rate, and the rates of formation or consumption of A, B, D. - (b) (i) What is a half-life? - (ii) Derive the expression that relates the half-life to the rate constant and initial concentration for a zero order reaction. [4] - (c) Methane is a by-product of a number of natural and industrial processes. Reaction with the hydroxyl radical, OH, is the main path by which CH₄ is removed from the lower atmosphere. The rate constants for this bimolecular gas-phase reaction have been measured over a range of temperatures of interest in atmospheric chemistry. Deduce the Arrhenius parameters, E_a and A, from the following data. [10] | T/K | 295 | 223 | 218 | 213 | 206 | 200 | 195 | |--|------|-------|-------|-------|-------|-------|-------| | k/10 ⁶ Lmol ⁻¹ s ⁻¹ | 3.55 | 0.494 | 0.452 | 0.379 | 0.295 | 0.241 | 0.217 | - (d) Show that for a small perturbation the relaxation time for the reaction $A \Rightarrow B + C$ (k_f and k_r are the rate constants for the forward and reverse reactions) is given by $\tau = \{k_f + k_r([B]_{eq} + [C])\}^{-1}$. [4] - (ii) The measured relaxation time for a small temperature jump is 3.0 μ s. If at 25 °C the equilibrium constant for the system is 2.0 x 10⁻¹⁶, and the equilibrium concentrations of B and C are both 2.0 x 10⁻⁴ M, calculate the rate constants, k_f and k_r . [3] Question 6 (25 marks) - (a) Explain how the permanent dipole moment and polarizability of a molecule arise. [6] - (b) The relative permittivity of camphor (molar mass M = 152.3 g/mol and melting point 175 °C) was measured over a range of temperatures. Use the data that was obtained and is given in the table below to calculate the dipole moment and polalarizability of camphor. [12] | Temperature | Relative | Density, ρ | | | |-------------|-----------------|--------------------|--|--| | θ, °C | permittivity, ε | g cm ⁻³ | | | | 0 | 12.5 | | | | | 20 | 11.4 | 0.99 | | | | 40 | 10.8 | 0.99 | | | | 60 | 10.0 | 0.99 | | | | 80 | 9.50 | 0.99 | | | | 100 | 8.90 | 0.99 | | | | 120 | 8.10 | 0.97 | | | | 140 | 7.60 | 0.96 | | | | 160 | 7.11 | 0.95 | | | | 200 | 6.21 | 0.91 | | | $$\label{eq:pm} \left[\text{Useful equation} \quad P_m = \frac{N_A}{3\epsilon_0} \left(\alpha + \frac{\mu^2}{3kT} \right) \quad \text{where } P_m = \left(\frac{\varepsilon_r - 1}{\varepsilon + 2} \right) \frac{M}{\rho} \right]$$ (c) The refractive index of CH₂I₂ is 1.732 for 656 nm light. Its density at 20 °C is 3.32 g cm⁻³. Calculate the polarizability of the molecule at this wavelength. [7] | | | 7 | 6 | 5 | , | ω | 2 | Period
1 | | Group | |--|--------------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|------------------------|------------------------|------------|----------| | 89 90 91 92 93 94 95 96 97 Actinides Ac Th Pa U Np Pu Am Cm Bl 227.0 232.0 231.0 238.0 237.1 239.1 241.1 247.1 249.1 | Lanthanides | 87
Fir
223 | 1329
C3 | 37
Rb
85.47 | 39.10 | 11
Na
22.99 | 3
Li
6.94 | 1
H
1.008 | IA | _ | | des | nides | 88
Ra
226.0 | 56
Ba
137.3 | 38
Sr
87.62 | 20
Ca
40.08 | 12
Mg
24.31 | 9.01 | | ΙĀ | 2 | | | | 103
Lr
257 | 71
Lu
174.9 | 39
Y | 44.% | | | | 8 | <u>.</u> | | 89
Ac
227.0 | 57
La
138.9 | Unq
Unq | 72
Hf
178.5 | 40
Zr
91.22 | 22
Tii
47.90 | | | | IVB | 4 | | 90
Th
232.0 | 58
Ce
140.1 | Unp | 73
Ta
180.9 | Nb 91.22 | 23
V
50.94 | | | | ₩ | Ų | | 91
Pa
231.0 | 59
Pr
140.9 | Unh | 74
W
183.8 | 42
Mo
95.94 | 24
Cr
52.01 | | | | ¥B | c | | 92
U
238.0 | 60
Nd
144.2 | 107
Una | 75
Re
186.2 | 13
Tc
98.9 | 25
Min
54.9 | METALS | | | AIIIA | • | | 93
Np
237.1 | 61
Pm
146.9 | Uno | 76
Os | 101.1 | 26
Fe
55.85 | | | 7 | | ۰ | | 94
Pu
239.1 | 62
Sm
150.9 | Une | 77
Ir
192.2 | 45
Rh
102.9 | 27
Co
58.71 | | METAI | NON-METALS | AIIIA | • | | 95
Am
241.1 | 63
Eu
151.3 | | 78
Pt
195.1 | 46
Pd
106.4 | 28
Ni
58.71 | | METALLOIDS | ETALS | | 5 | | 96
Cm
247.1 | 64
Gd
157.3 | | 79
Au
196.9 | 47
Ag
107.9 | 29
Cu,
63.54 | | † | 1 | ₿ | | | 97
Bk
249.1 | 65
Tb
158.9 | | 80
Hg
200.6 | 48
Cd
112.4 | 30
Zn
65.37 | | | | Ħ | ; | | 98
Cf
251.1 | 66
Dy
162.5 | | 81
T1
204.4 | 49
In
114.8 | 31
Ga
69.7 | 13
Al
26.9 | 5
B
10.81 | | AIII | | | 99
Es
254.1 | 67
Ho
164.9 | | 82
Pb
207.2 | 50
Sn
118.7 | 32
Ge
72.59 | 14
Si
28.09 | ,
C | | IVA | 7 | | 100
Fm
257.1 | 68
Er
167.3 | | 83
Bi
208.9 | 51
Sb
121.8 | 33
As
74.92 | | | | ٧A | ; | | 101
Md
258.1 | 69
Tm
168.9 | | 84
Po
210 | 52
Te
127.6 | | | | | VIA | 7 | | 102
No
255 | 70
Yb
173.0 | | 85
At
210 | | | | | | AII | ; | | ध | | | 34 | 74.1 | | | | | VIIIA | 5 | THE PERIODIC TABLE OF ELEMENTS # General data and fundamental constants | Quantity | Symbol | Value | |-------------------------|--|---| | Speed of light | c | 2.997 924 58 X 10 ⁸ m s ⁻¹ | | Elementary charge | e ' | 1.602 177 X 10 ⁻¹⁹ C | | Faraday constant | $F = N_A e$ | 9.6485 X 10 ⁴ C mol ⁻¹ | | Boltzmann constant | k | 1.380 66 X 10 ⁻²³ J K ⁻¹ | | Gas constant | $R = N_A k$ | 8.314 51 J K ⁻¹ mol ⁻¹ | | | · | 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ | | | • | 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ | | Planck constant | h | 6.626 08 X 10 ⁻³⁴ J s | | | $\hbar = h/2\pi$ | 1.054 57 X 10 ⁻³⁴ J s | | Avogadro constant | N_A | 6.022 14 X 10 ²³ mol ⁻¹ | | Atomic mass unit | u | 1.660 54 X 10 ⁻²⁷ Kg | | Mass | ; | | | electron | m_e | 9.109 39 X 10 ⁻³¹ Kg | | proton | m_{p} | 1.672 62 X 10 ⁻²⁷ Kg | | neutron | m_n | 1.674 93 X 10 ⁻²⁷ Kg | | Vacuum permittivity | $\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$ | 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ | | · • | $4\pi\epsilon_{o}$ | $1.112 65 \text{ X } 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$ | | Vacuum permeability | μ_{o} | $4\pi \text{ X } 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | - '. | $4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$ | | Magneton | | | | Bohr | $\mu_{\rm B} = e\hbar/2m_{\rm e}$ | 9.274 02 X 10 ⁻²⁴ J T ⁻¹ | | nuclear | $\mu_{N} = e\hbar/2m_{p}$ | 5.050 79 X 10 ⁻²⁷ J T ⁻¹ | | g value | g _e | 2.002 32 | | Bohr radius | $a_o = 4\pi \epsilon_o \hbar/m_e e^2$ | 5.291 77 X 10 ⁻¹¹ m | | Fine-structure constant | $\alpha = \mu_0 e^2 c/2h$ | 7.297 35 X 10 ⁻³ | | Rydberg constant | $R_{\infty} = m_e e^4 / 8h^3 c \epsilon_0^2$ | $1.097\ 37\ X\ 10^7\ m^{-1}$ | | Standard acceleration | | - | | of free fall | g | 9.806 65 m s ⁻² | | Gravitational constant | G | 6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻² | | | · _ | | # **Conversion factors** | 1 cal = 1 eV = | | - | joul <u>e</u> s (.
2 X 10 ⁻¹ | , | 1 erg
1 eV/molecule | | | = | 1 X 10 ⁻⁷ J
96 485 kJ mol ⁻¹ | | | |----------------|-----|-------|--|------|--------------------------------|-------|-------|------|---|--|--------| | Prefix | xes | femto | pico | nano | μ
micro
10 ⁻⁶ | milli | centi | deci | kilo | | G giga |