UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2010/2011

TITLE OF PAPER:

ADVANCED

CHEMISTRY

INORGANIC

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

- (a) What are the oxidation states of the transition metals in each of the following compounds?
 - (i) $Ti(NEt_2)_4$
 - (ii) NiBr₃(PEt₃)₂

[2]

- (b) (i) Suggest a synthesis for:
 - (1) $Na[B(C_2H_5)_4]$
 - (2) C_2H_5MgBr
 - (ii) Write equations for a two-step preparation of $(\eta^5-C_5H_5)_2Ni$ from C_5H_6 , Na, and NiCl₂. [8]
- (c) Discuss the mechanism of the synthesis of alkenes from aldehydes or ketones by use of the Wittig reaction. [4]
- (d) (i) Draw the structure of each of the organometallic substances found in the following reaction:
 Mo(CO)₆ + C₇H₈
 ^{reflux} → Mo(CO)₃C₇H₈ + 3CO
 - (ii) Would you expect Zeise's salt anion, [PtCl₃C₂H₄] to add other ligands readily? Explain. [7]
- Explain mechanistically why transition metal alkyls that have a β-hydrogen atom are usually unstable, whereas analogous compounds in which the alkyls do not have β-hydrogen atoms generally are stable.

QUESTION TWO

- (a) (i) In what ways can CO be bound to a metal atom?
 - (ii) Why are the simplest carbonyls of the metals Mn, Tc, Re and Co, Rh, Ir groups polynuclear? [6]
- (b) (i) In order to have a neutral vanadium carbonyl that satisfies the noble gas formalism, what would be the simplest formula?
 - (ii) Why do you think this fails to occur?

[4]

(c) Explain the variation in the following rates for the oxidative addition reaction between MeI and IrX(CO)L₂ as X and L are changed:

(i) X = F > Cl > Br > I

Rate decrease

(ii) $L = PMe_2Ph > PEt_3 > PEt_2Ph > PEtPh_2 > PPh_3$

Rate decrease

[6]

- (d) Explain the following:
 - (i) variation in IR C-O stretching frequencies in fac-(R₃P)₃Mo(CO)₃ complexes:

R v_{C-O} (cm⁻¹) F 2074, 2026 • Cl 2041, 1989 Ph 1949, 1835

- (ii) $Co(\eta^5-C_5H_5)_2$ reacts with alkyl halides (RX) to give $[Co(\eta^5-C_5H_5)_2]^+$ and $[Co(\eta^4-C_5H_5R)(\eta^5-C_5H_5)]$.
- (iii) Mo(py)₂(CO)₄ has two forms, one having a single CO stretching band in the IR spectrum, the other four. [9]

QUESTION THREE

(a)	(ii)					e what isolobal a carbonyls that a Mn(CO)(NO)	re isoelectronic	with
		(3)	Mn(CO) ₄ N	O?		, ,, ,		[6]
(b)	(i)	(1) (2)	What is an Give two re			n?		
	(ii)	What	is the differe	nce between	een a π	-acid ligand like orms π complexe	•	llog) and [6]
(c)	struct	ures of	s of cluster verthe species gi (CO) ₁₅		v:	(CVE) count, s(CO) ₁₄	predict and sk	
	(i)	re ₅ C((CO)15	(11)	NISO	S(CO) ₁₄		[4]
(d)	-		lyhedral Skelo ing clusters:	etal Elect	ron Pair	r Theory (PSEP	T) predict the s	tructures
	(i)		(CO) ₁₆]	(ii)	[HRu	15C(CO)14]		
	(iii)	[Re ₈ C	C(CO) ₂₀ (PF ₃) ₄] ²⁻				[9]
QUI	ESTIO	N FO	UR					
(a)	(i)	Deter	mine the num	ber of un (2)	paired of Pm ³⁺	electrons in the (3)	ions Sm ²⁺	
	(ii)		mine the ground ted magnetic			ymbol for a Dy ue.	3+ ion and calc	ulate the
(b)	(i)		is characteris examples.	tic about	the coo	ordination numb	ers of lanthanid	e ions?
	(ii)	What	-	acteristic	precip	itation reactions	s of lanthanide	+2, +3,
	(iii)	•	is it that lan conegative liga		ons for	rm the stronges	t bonds with t	he most [9]
(c)	(i)		h +3 ion has i				0	
	(ii) (iii)				_	eding element sh eeding element s		[3]
(d)	-	ou thin answer.		yls of the	e lantha	anides are likely	y to be stable?	Justify [3]
(e)	Comp	oare and	d contrast the	chemistry	of the	dioxo ions of U	, Np, Pu, and A	m. [4]

QUESTION FIVE

(a)	(i)	Describe the (1) $[I_3]^+$.	bonding	g in (2)	[I ₃] ⁻ .							
	(ii)	. ,	very lov	` ,		out dissolves re	eadily in	KI (aq.) [6]				
(b)	(i)	following pro	ocesses:			rall (net) react		ch of the				
	(ii)	(1) hydro Outline the n	oformyla nechanis	` '		egler-Natta press.	ocess	[9]				
(c)	mixtu hydro comp	omplex [η ⁵ -C ₅ res giving first xymethyl con lex, η ⁵ -C ₅ H ₅ F ounds obey the	t a form nplex, Re(CO)(yl complex, η ⁵ -C ₅ H ₅ Re(C NO)CH ₃ .	η ⁵ -C ₅ H ₅ R :O)(NO)–	e(CO)(NO)—C CH ₂ OH, and	C(=O)H, third a	second a methy				
(d)	- `	OEt) ₃] ₄ is used CH ₂ =CH-CI est a sensible se	H=CH ₂	+ HCN →		₄ CN		[6]				
QUE	STIO	N SIX										
(a)	Name	five properties	s that de	etermine the	itility of a	solvent.		[5]				
(b)	Give 1	the autodissoci	ation rea	actions of the	followin	g compounds:						
	(i)	H ₂ SO ₄	(ii)	NH ₃	(iii)	IF ₅	(iv)	Cl ₃ PO [4]				
(c)	(i) (ii)	State the Bro State the Lev illustrate it, in	vis defir	nition of acid	s and base	s and write the	ree equa	tions that [6]				
(d)	Consi (i) (ii) (iii) (iv)	der acetic acid What is its m Name one su Name one su Will acetic compounds?	ode of s bstance bstance acid be	self-ionization that will be that will be that will be the a better of	n likely to an acid in a base in a or poorer	be? acetic acid. cetic acid. solvent than						
(e)	(i) Explain why dimethyl sulphoxide, DMSO, is a very good solvent and ionic materials.											
	(ii)		think p	_	-	phosphine oxid	les (R₃P	O) differ [6]				

PERIODIC TABLE OF ELEMENTS

*Lanthanide Series		ŧ		,	, 7			6			y,			4			ຜ			2			2			1		PERIODS		
				87	Ŧ	223	55	Cs	132.91	37	Rb	85.468	19	×	39.098	11	: Z	22.990	J	, <u>F</u>	6.941	1	Ħ	1.008	IA					
		1		88	Ra	226.03	56	Ва	137.33	38	Sr	87.62	20	Ca	40.078	12	Mg	24.305	4	Ве	9.012		-		IIA	2				
1				89	**Ac	(227)	57	*La	138.91	39	×	88.906	21	Sc	44.956	-									ШВ	3				
36	£	140.12		104	Rf	(261)	72	Hſ	178.49	40	Zr	91.224	22	Ti	47.88										IVB	4				
99	Pr	140.91		105	Ha	(262)	73	Ta	180.95	41	Z Z	92.906	23	∀	50.942										VB	5				
g	ď	144.24		106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Ç	51.996		TRAN								VIB	6				
61	Pm	(145)		107	Uns	(262)	75	Re	186.21	43	Tc	98.907	25	Mn	54.938	•	TRANSITION ELEMENTS								VIIB	7				
62	Sm	150.36		108	Uno	(265)	76	S O	190.2	44	Ru	101.07	26	Fe	55.847		ELEM									8	6			
63	Eu	151.96	. ,,	109	Une	(266)	. 77	Ħ,	192.22	45	2	102.91	27	Ç	58.933	٠.	ENTS						-		VIIIB	9	GROUPS			
64	ପ	157.25		110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	• 28	Z	58.69										-	10:				
65	ď	158.93	•				79	Au	196.97	47	A	107.87	29	Cu	63.546				Aton	Syı	Atom				B	=				
66	Dy	162,50	-				8	Hg	200.59	48	2	112.41	30	Zn	65.39				Atomic No.	Symbol .	Atomic mass -				B	12				
67	Ho	164.93					81	1	204.38	49	Ĭn	114.82	31	ଫୁ	69.723	13	A	26.982	5	₩	₩0.811				IIIA	13				
68	E	167.26					%	Pb	207.2	50	Sn	118.71	32	Ge	72.61	14	Si	28.086	6	C	12.011				IVA	-14				
69	Tm	168.93					د	B .	208.98	51	Sb	121.75	33	As	74.922	15	P	30.974	7	Z	14.007				VA	15				
70 .	ďY	173.04					84	Po	(209)	52	Te	127.60	34	Se	78.96	16	S	32.06	· · ·	0	15.999				VIA	16				
71	Lu	174.97					<u>8</u> 5	At .	(210)	, 5 3	-	126.90	35	Br	79.904	17	Ω	35.453	9	壤	18.998				AIIA	17				
							86	E	(222)	54	Xe	131.29	36	ζ.	83.80	18	Ar	39.948	10	Ne	20.180	2	He	4.003	VIIIA	18				

Eu 63 (243) **Am** 95

64 64 Cm 96

(247) **Bk** 97

(251) Cf 98

(252) E.s. 99

(257) **Fm** 100

7m 69 (258) Md 101

Yb 70 (259) No

(260) Lr 103

**Actinide Series

232.04 **Th** 90

231.04 238.03 237.05 (244) **Pa U Np Pu**91 92 93 94

() indicates the mass number of the isotope with the longest half-life.