UNIVERSITY OF SWAZILAND

SUPPLEMENTARY FINAL EXAMINATION

ACADEMIC YEAR 2010/2011

TITLE OF PAPER:

INORGANIC CHEMISTRY

COURSE CODE:

C301

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS.

ANSWER ANY FOUR (4)

QUESTIONS. EACH QUESTION IS

WORTH 25 MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

CALCULATORS MAY BE USED

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

- a) Give the IUPAC name for each of the following:
 - i) $K_3[Co(NO_2)_6]$
 - ii) $[Cr(en)_3][Cr(Ox)_3]$
 - iii) $[Cl_3W(\mu-Cl)_3WCl_3](ClO_4)_3$
 - iv) $W(CH_2CH_3)_6$

[6]

- b) Give the formula of each of the following:
 - i) Sodium pentacyanonitrosylferrate(II) dihydrate
 - ii) Potassium pentachloronitroosmate(IV)
 - iii) Tetraammineaquacobalt(III)-μ-cyanobromotetracyanocobaltate(III)

. [6]

- c) State the type of isomerism that may be exhibited by the following sixcoordinate complexes, and draw structures of the isomers:
 - i) $[Pt(en)_2Cl_2]Br_2$
 - ii) Pd(bpy)(NCS)₂
 - iii) Rh(acac)₃

[13]

Question Two

a) A monomeric complex of cobalt gave the following result on analysis:

Species	Co	NH ₃	Cl ⁻	SO ₄ ²⁻	H ₂ O
%, by	21.24	24.77	12.81	34.65	?
mass					

The compound is diamagnetic and contains no other groups or elements, except that water might be present. Using the above data, calculate the formula of the compound

[8]

- b) The value of μ_{eff} for $[CoF_6]^{3-}$ is 5.63 BM. Explain why this value does not agree with the value of magnetic moment calculated from the spin-only formula. [6]
 - c) Explain why under the influence of an octahedral field, the energies of the d orbitals are raised or lowered.

[7]

d)	What is the expected ordering of Δ_0 for $[Fe(OH_2)_6]^{2+}$, $[Fe(CN)_6]^{3-}$ and
	[Fe(CN) ₆] ⁴⁻ ? Rationalize your answer.

[4]

Question Three

a) A substitution reaction of *trans*-[Pt(PEt₃)₂(Ph)Cl] with thiourea, tu, that leads to the formation of *trans*-[Pt(PEt₃)₂(Ph)(tu)] in methanol, follows a two-term rate law with

$$k_{obs} = k_1 + k_2[tu]$$

Give a plausible mechanism for the reaction. Suggest how the values of k_1 and k_2 may be obtained.

[10]

b) $[V(H_2O)_6]^{3+}$ has absorption bands at 17800, 25700 and 34500 cm⁻¹. Use the Tanbe-Sugano diagram for a d² configuration to estimate values of Δ_0 and B for this complex.

[15]

Question Four

a) Complete and balance the following reactions:

ii)
$$Mo + Cl_2$$

iii)
$$Cr + O_2$$

iv)
$$M_0 + O_2 \longrightarrow$$

[8]

b) Explain each of the following:

i) TiO₂ is white but TiCl₃ is violet

[4]

ii) Physical and chemical properties of Zr and Hf are much more similar than the properties of Zr and Ti

[4]

c) Write a balanced reaction equation to depict what happens when vanadium(V) oxide, V₂O₅, is dissolved in

- i) A concentrated solution of a strong base
- ii) A concentrated solution of a strong acid

[4]

d) Iron(III) iodide, FeI₃, is unstable whereas FeCl₃ is stable. Explain. Give a balanced reaction equation depicting the reaction that takes place when an aqueous solution of KI is added to an aqueous solution of Fe(NO₃)₃

[5]

Question Five

- a) Consider the reaction of $[Rh(H_2O)_6]^{3+}$ (which has octahedral shape) with chloride ions, Cl⁻. Use the concept of *trans effect* to give the structure of the product when careful addition of Cl⁻ to the hexaaqua complex is carried out so that there are (per complex)
 - i) two Cl⁻ ions
 - ii) three Cl⁻ ions
 - iii) four Cl⁻ ions

[Note the trans effect sequence: H₂O< Cl⁻]

[6]

- b) Explain why
 - i) Certain ligands such as F stabilize the maximum oxidation states of elements whilst others such as CO stabilize the lowest oxidation states. Illustrate your answer with suitable orbital diagrams

[8]

ii) The lowest oxide of a transition metal tends to be basic whereas the highest oxidation state tends to acidic

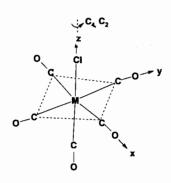
[3]

c) Discuss, with examples (one for each), the difference between outer-sphere and inner-sphere mechanisms. State what is meant by a self-exchange mechanism.

[8]

Question Six

- a) With the help of the flow-chart (i.e. decision tree) which is provided, determine point group for each of the following:
 - i) Cis-[PtCl₂BrI]²⁻
 - ii) SF₅Cl


- iii) trans-Co(Br)(Cl)(NH₃)₄
- iv) d_{xy} orbital (whose shape is sketched below)

[12]

b) Determine the symmetries of CO <u>stretching modes</u> for the complex $[M(CO)_5Cl]$ (which has C_{4v} point group). Which of the modes are IR active? Which ones are Raman active?

[13]

Useful relations

At 296 15 K RT = 2 4790 k3 mol * and RT/F = 25 693 mV

latm= 101/325 kPq = 780 Tor; (exactly)

lbate= 101 R8

lev = 1/802/19 × 101* 0 = 96 488 k3 mol * = 8065/5 cm s

l cm * = 1/986 x 103* 0 = 1/196 J mol * = 0.1/240 meV

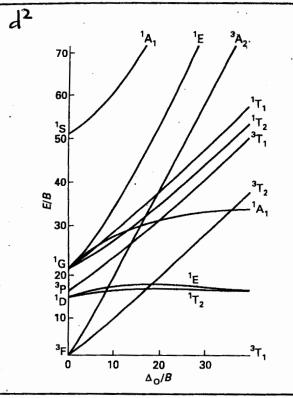
loal= 4, 34 J (exactly)

l D (debyet=3, 335/64 × 101/2 C m

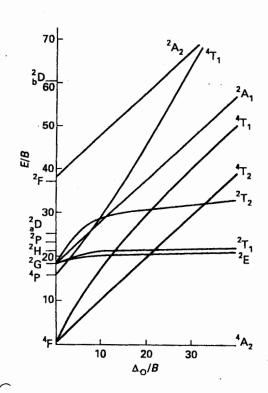
l A * (angstrom) = 100 pm;

l y = 1 mol/dm 3

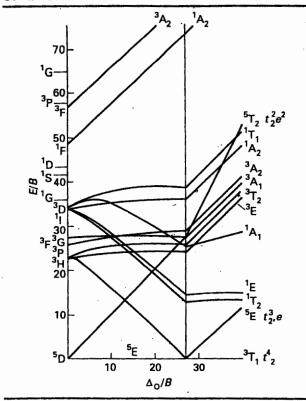
General data and fundamental constants

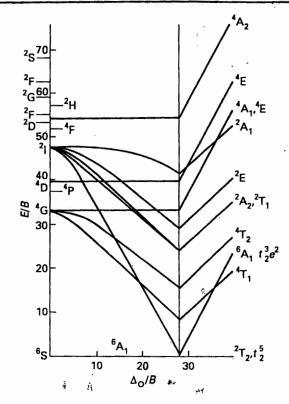

$P^{\dagger}(\pi) = 3.142$					
Quantity	Symbol	Value			
Speed of light	C	12.997.925 X 10° co s			
Elementary charge	e	1.602-177×10 (E.C.)			
Faraday constant	$F = eN_A$	9.6485 × 107 C mold, The 1877 cm.			
Boltzmann constant	<i>k</i>	1380 665 10 140 15			
Gas constant	$R = kN_A$	83145a0K / mgk.			
		8:206 78 × 00° 5dm ann K 25mil			
Planck constant	h	6.626.08×10c4			
	$\hbar=\hbar/2\pi$	1.054 57 \$ 101 2 754			
Avogadro constant	N _A	6.022.14 × 105 mg = 2.5 mg			
Atomic mass unit	ų	1.660.54 × 10 m kg			
Mass of electron	m _e	9.10939 X 101 ko			
Vacuum permittivity	$arepsilon_0$	8.85419,X00,XJ 1C, malana 41			
	$4\pi \varepsilon_0$	1:112.65 ×10° 2.12°C m3.33° 3.23°			
Bohr magneton	$\mu_{\rm B}=e\hbar/2m_{\rm e}$	9.274 02 × 10 2 9 1 24 3 3 3 4 3 5			
Bohr radius	$a_0 = 4\pi\varepsilon_0 \hbar^2/m_e e^2$	5.291.77 × 10 Um + 3.23 (a)			

Prefixes

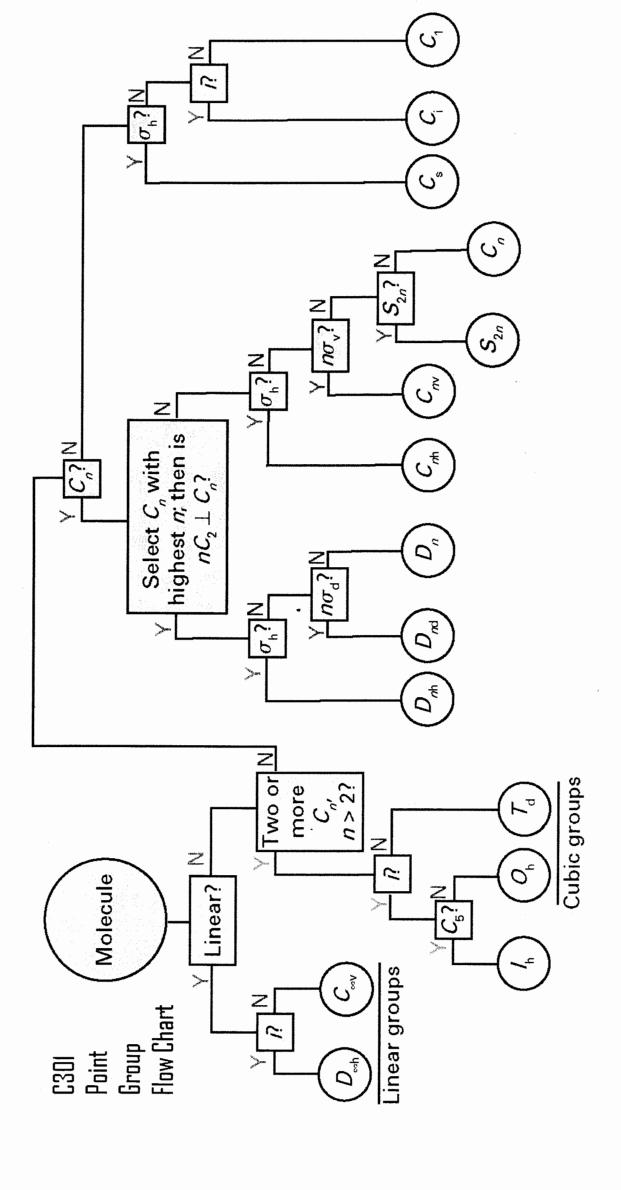

pi(11) = 3.14	2
	m c d k M
The state of the s	ro milli centi deci kilô mega giga -6 -10 ⁻³ 10 ⁻² 10 ^{5 1} 10 ⁸ 10 ⁸

Rydberg constant $R_{\infty} = m_{\rm e}e^4/8h^3c\varepsilon_0^2$


1. d^2 with C = 4.42B


2. d^3 with C = 4.5B

3. d^4 with C = 4.61B


4. d^5 with C = 4.477B

4 APPENDICES

4. The C_{nv} Groups

$C_{2\nu}$	E	C ₂	$\sigma_{\nu}(xz)$	$\sigma'_{v}(yz)$		
A_1	1	1	1 -1 1 -1	1	z	x^2, y^2, z^2 xy xz yz
A_2	1	1	1	-1	R _z	xy
B_1	1	-1	1	-1	x, R,	xz
B_2	1	-1	-1	1	y, R_x	yz

