UNIVERSITY OF SWAZILAND ## SUPPLEMENTARY FINAL EXAMINATION #### **ACADEMIC YEAR 2010/2011** TITLE OF PAPER: **INORGANIC CHEMISTRY** **COURSE CODE:** C301 TIME ALLOWED: **THREE (3) HOURS** **INSTRUCTIONS:** THERE ARE SIX (6) QUESTIONS. **ANSWER ANY FOUR (4)** **QUESTIONS. EACH QUESTION IS** **WORTH 25 MARKS.** A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER. **CALCULATORS MAY BE USED** PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. #### **Question One** - a) Give the IUPAC name for each of the following: - i) $K_3[Co(NO_2)_6]$ - ii) $[Cr(en)_3][Cr(Ox)_3]$ - iii) $[Cl_3W(\mu-Cl)_3WCl_3](ClO_4)_3$ - iv) $W(CH_2CH_3)_6$ **[6]** - b) Give the formula of each of the following: - i) Sodium pentacyanonitrosylferrate(II) dihydrate - ii) Potassium pentachloronitroosmate(IV) - iii) Tetraammineaquacobalt(III)-μ-cyanobromotetracyanocobaltate(III) . [6] - c) State the type of isomerism that may be exhibited by the following sixcoordinate complexes, and draw structures of the isomers: - i) $[Pt(en)_2Cl_2]Br_2$ - ii) Pd(bpy)(NCS)₂ - iii) Rh(acac)₃ [13] #### **Question Two** a) A monomeric complex of cobalt gave the following result on analysis: | Species | Co | NH ₃ | Cl ⁻ | SO ₄ ²⁻ | H ₂ O | |---------|-------|-----------------|-----------------|-------------------------------|------------------| | %, by | 21.24 | 24.77 | 12.81 | 34.65 | ? | | mass | | | | | | The compound is diamagnetic and contains no other groups or elements, except that water might be present. Using the above data, calculate the formula of the compound [8] - b) The value of μ_{eff} for $[CoF_6]^{3-}$ is 5.63 BM. Explain why this value does not agree with the value of magnetic moment calculated from the spin-only formula. [6] - c) Explain why under the influence of an octahedral field, the energies of the d orbitals are raised or lowered. [7] | d) | What is the expected ordering of Δ_0 for $[Fe(OH_2)_6]^{2+}$, $[Fe(CN)_6]^{3-}$ and | |----|---| | | [Fe(CN) ₆] ⁴⁻ ? Rationalize your answer. | [4] #### **Question Three** a) A substitution reaction of *trans*-[Pt(PEt₃)₂(Ph)Cl] with thiourea, tu, that leads to the formation of *trans*-[Pt(PEt₃)₂(Ph)(tu)] in methanol, follows a two-term rate law with $$k_{obs} = k_1 + k_2[tu]$$ Give a plausible mechanism for the reaction. Suggest how the values of k_1 and k_2 may be obtained. [10] b) $[V(H_2O)_6]^{3+}$ has absorption bands at 17800, 25700 and 34500 cm⁻¹. Use the Tanbe-Sugano diagram for a d² configuration to estimate values of Δ_0 and B for this complex. [15] #### **Question Four** a) Complete and balance the following reactions: ii) $$Mo + Cl_2$$ iii) $$Cr + O_2$$ iv) $$M_0 + O_2 \longrightarrow$$ [8] b) Explain each of the following: i) TiO₂ is white but TiCl₃ is violet [4] ii) Physical and chemical properties of Zr and Hf are much more similar than the properties of Zr and Ti [4] c) Write a balanced reaction equation to depict what happens when vanadium(V) oxide, V₂O₅, is dissolved in - i) A concentrated solution of a strong base - ii) A concentrated solution of a strong acid [4] d) Iron(III) iodide, FeI₃, is unstable whereas FeCl₃ is stable. Explain. Give a balanced reaction equation depicting the reaction that takes place when an aqueous solution of KI is added to an aqueous solution of Fe(NO₃)₃ [5] #### **Question Five** - a) Consider the reaction of $[Rh(H_2O)_6]^{3+}$ (which has octahedral shape) with chloride ions, Cl⁻. Use the concept of *trans effect* to give the structure of the product when careful addition of Cl⁻ to the hexaaqua complex is carried out so that there are (per complex) - i) two Cl⁻ ions - ii) three Cl⁻ ions - iii) four Cl⁻ ions [Note the trans effect sequence: H₂O< Cl⁻] [6] - b) Explain why - i) Certain ligands such as F stabilize the maximum oxidation states of elements whilst others such as CO stabilize the lowest oxidation states. Illustrate your answer with suitable orbital diagrams [8] ii) The lowest oxide of a transition metal tends to be basic whereas the highest oxidation state tends to acidic [3] c) Discuss, with examples (one for each), the difference between outer-sphere and inner-sphere mechanisms. State what is meant by a self-exchange mechanism. [8] # **Question Six** - a) With the help of the flow-chart (i.e. decision tree) which is provided, determine point group for each of the following: - i) Cis-[PtCl₂BrI]²⁻ - ii) SF₅Cl - iii) trans-Co(Br)(Cl)(NH₃)₄ - iv) d_{xy} orbital (whose shape is sketched below) [12] b) Determine the symmetries of CO <u>stretching modes</u> for the complex $[M(CO)_5Cl]$ (which has C_{4v} point group). Which of the modes are IR active? Which ones are Raman active? [13] # **Useful relations** At 296 15 K RT = 2 4790 k3 mol * and RT/F = 25 693 mV latm= 101/325 kPq = 780 Tor; (exactly) lbate= 101 R8 lev = 1/802/19 × 101* 0 = 96 488 k3 mol * = 8065/5 cm s l cm * = 1/986 x 103* 0 = 1/196 J mol * = 0.1/240 meV loal= 4, 34 J (exactly) l D (debyet=3, 335/64 × 101/2 C m l A * (angstrom) = 100 pm; l y = 1 mol/dm 3 # General data and fundamental constants | $P^{\dagger}(\pi) = 3.142$ | | | | | | |----------------------------|---|------------------------------------|--|--|--| | Quantity | Symbol | Value | | | | | Speed of light | C | 12.997.925 X 10° co s | | | | | Elementary charge | e | 1.602-177×10 (E.C.) | | | | | Faraday constant | $F = eN_A$ | 9.6485 × 107 C mold, The 1877 cm. | | | | | Boltzmann constant | <i>k</i> | 1380 665 10 140 15 | | | | | Gas constant | $R = kN_A$ | 83145a0K / mgk. | | | | | | | 8:206 78 × 00° 5dm ann K 25mil | | | | | Planck constant | h | 6.626.08×10c4 | | | | | | $\hbar=\hbar/2\pi$ | 1.054 57 \$ 101 2 754 | | | | | Avogadro constant | N _A | 6.022.14 × 105 mg = 2.5 mg | | | | | Atomic mass unit | ų | 1.660.54 × 10 m kg | | | | | Mass of electron | m _e | 9.10939 X 101 ko | | | | | Vacuum permittivity | $arepsilon_0$ | 8.85419,X00,XJ 1C, malana 41 | | | | | | $4\pi \varepsilon_0$ | 1:112.65 ×10° 2.12°C m3.33° 3.23° | | | | | Bohr magneton | $\mu_{\rm B}=e\hbar/2m_{\rm e}$ | 9.274 02 × 10 2 9 1 24 3 3 3 4 3 5 | | | | | Bohr radius | $a_0 = 4\pi\varepsilon_0 \hbar^2/m_e e^2$ | 5.291.77 × 10 Um + 3.23 (a) | | | | # **Prefixes** | pi(11) = 3.14 | 2 | |--|---| | | m c d k M | | The state of s | ro milli centi deci kilô mega giga
-6 -10 ⁻³ 10 ⁻² 10 ^{5 1} 10 ⁸ 10 ⁸ | Rydberg constant $R_{\infty} = m_{\rm e}e^4/8h^3c\varepsilon_0^2$ # 1. d^2 with C = 4.42B # 2. d^3 with C = 4.5B ## 3. d^4 with C = 4.61B # 4. d^5 with C = 4.477B #### 4 APPENDICES #### 4. The C_{nv} Groups | $C_{2\nu}$ | E | C ₂ | $\sigma_{\nu}(xz)$ | $\sigma'_{v}(yz)$ | | | |------------|---|----------------|--------------------|-------------------|----------------|--------------------------------| | A_1 | 1 | 1 | 1
-1
1
-1 | 1 | z | x^2, y^2, z^2 xy xz yz | | A_2 | 1 | 1 | 1 | -1 | R _z | xy | | B_1 | 1 | -1 | 1 | -1 | x, R, | xz | | B_2 | 1 | -1 | -1 | 1 | y, R_x | yz |