UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2010/11

TITLE OF PAPER: INTRODUCTORY CHEMISTRY II

COURSE NUMBER: C112

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 40 marks)
- (ii) Answer any 3 questions in section B (Each question is 20 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

Useful data and equations

1 atm = 760 Torr = 760 mmHg

1 atm = 101325 Pa

Arrhenius equation: $k = Ae^{-E_a/RT}$ or $\ln k = \ln A - \frac{E_a}{RT}$

Van der Waals equation: $P = \frac{nRT}{V - nb} - \frac{n^2a}{V^2}$

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (40 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 40 questions.

1.	The value of ΔH 2.00 mol of NaOl	H is formed in			kJ are released when
	(A) 252		(C) 3.9		
2.	A sample of a ga 15 L. The final p (A) 1.5				t temperature from 10 L to
	(A) 1.5	(B) 7.5	(C) 0.67	(D) 3.3	(E) 15
3.	The value of K	or the equi	ilibrium		
	- (0)	+ $I_2(g) = 2$ At this temper		the value of	K_{eq} for the equilibrium
	below?				•
	107	$\Rightarrow \frac{1}{2} H_2(g) - $	+ ½ I ₂ (g) (C) 397	(D) 0.035	(E) 0.0013
4.	What is the conju	gate acid of N	IH ₃ ?		
	(A) NH ₃	(B) NH ₂ ⁺	(C) NH ₃ ⁺	(D) NH ₄ ⁺	(E) NH₄OH
5.	The simplest alky	yne is	•		
	(A) ethylene	(B) ethane	(C) acetylene	(D) propyn	e (E) benzene
6.	A chemical reacti has a			surroundings is	s said to be and
			(B) endothern (E) exotherm		(C) exothermic, negative
7.	mol of He and 5.0) mol of Ne in	the flask. The p	partial pressure	f 2.6 atm. There are 2.0 of He is atm.
	(A) 9.1	(B) 6.5	(C) 1.04	(D) 0.74	(E) 1.86
8.	•	contain a	<u> </u>		
	(A) C=C bond (E) C≡H bond		≡C bond	(C) C-C bond	(D) C=H bond
9.					n atoms are called
	(A) alkenes	(B) alkynes	(C) aromatic	s (D) alkaı	nes (E) ketones

10.	The equilibrium	expression for	Kp for the rea	ction below i	s	_• `
	2 O ₃ (§	$g) \Rightarrow 3 O_2(g)$				
	(A) $\frac{3P_{O_2}}{2P_{O_3}}$	(B) $\frac{2P_{O_3}}{3P_{O_2}}$	(C) $\frac{3P_{O_3}}{2P_{O_2}}$	(D) $\frac{{P_{O_3}}^2}{{P_{O_2}}^3}$	(E) $\frac{P_{O_2}^{3}}{P_{O_3}^{2}}$	
11.	A balloon origin balloon must be opressure).					
	(A) 38	(B) 0	(C) 72.9	(D) 273	(E) 546	
12.	The rate constant reactant is 0.26 m mol/L.					l concentration of rease to 0.13
	(A) 0.017	(B) 0.50	(C) 1.0	(D) 30	(E) 4.4×	10^{-3}
13.	The equilibrium	constant for th	e gas phase re	action		
	$2 \text{ NH}_3(g) \Rightarrow$	$N_2(g) + 3 H_2$	e(g)			
14.	(C) roughly e (D) only prod	predominate qual amounts o lucts are preser	(B) r of products and nt (E) o	eactants pred I reactants are nly reactants	e present are present	
	(A) K/J or °C (E) g-K/J or g	C/J (B) J	//K or J/°C	(C) J/g-K	or J/g-°C	(D) J/mol
15.	Consider the foll	lowing reaction	n at equilibrium	n:		
		$_3(g) \Rightarrow N_2(g)$	- 10/	0.77		
	Le Chatelier's p		ets that the mo	es of H ₂ in t	he reaction co	ontainer will
		noval of NH, i	from the reacti	on vessel (V.)	and T constar	nt)
		e in the total pr			and I constan	n <i>)</i>
	` '	of some N ₂ to	•	•	Γ constant)	
	(D) a decreas	e in the total vese in total press	olume of the re	action vessel	(T constant)	T constant)
16.	Cyclohexane has (A) 0 (B)	s; 1 (C) 2	fewer hydroge (D) 3	ns than n-hex (E) 4	ane.	
17.	Of the following, (A) $O_{\alpha}(g)$, ΔH _f °is <u>not</u> ze (B) C (grap			(D) E _s (s)	(E) Cl ₂ (g)
	(-) = 2(8)	(-) - (8-1	(0)	2 (8)	\ / -2\ - /	(-) -2(0)

18.	What is the pH of ion?	of an aqueous	solution at 25.0	°C that contain	as 3.98×10^{-9} M	hydronium
		(B) 5.600	(C) 9.000	(D) 3.980	(E) 7.000	
19.	A gas in a 325 m mol of gas in the		as a pressure of	f 695 torr at 19	°C. There are _	
	$(A)1.24 \times 10^{-2}$	(B)1	.48×10 ⁻²	(C) 9.42	(D) 12.4	(E) 80.6
20.	A reaction was for the reaction					
	(A) doubles(D) increases	• ,	emains unchan (E) is	ged s reduced by a f	(C) triples factor of 2	
21.	How many struction (A) 2		of pentane exist (C) 4		(E) 6	
22.	For which one of product?	the following	reactions is the	e value of ΔH° _x	equal to ΔH_f°	for the
	(A) 2C (s, gra	$aphite) + 2H_2$	$(g) \rightarrow C_2H_4(g)$	(B) 1	$N_2(g) + O_2(g) \rightarrow$	2NO(g)
	(C) $2H_2(g) +$	2 (-) 2	• •	(D) 2	$^{2}\mathrm{H}_{2}(\mathrm{g}) + \mathrm{O}_{2}(\mathrm{g}) -$	$\rightarrow 2H_2O(g)$
	(E) $H_2O(1)+1$	$1/2O_2(g) \rightarrow F$	$I_2O_2(l)$			
23.	If 50.75 g of a ga at STP.					L
	(A) 3.92	(B) 50.8	(C) 12.9	(D) 25.5	(E) 5.08	
24.	At elevated temp oxygen: $2N_2O_5(g)$	eratures, dinition $\rightarrow 4NO_2(g)$		e decomposes t	o nitrogen dioxi	de and
	When the rate of is M		NO_2 is $5.5 \times 10^{\circ}$	⁻⁴ M/s, the rate	of decomposition	of N ₂ O ₅
			$.4\times10^{-4}$	(C) 10.1×10	⁻⁴ (D) 2.5	8×10^{-4}
25.	What is the conc 4.282?					_
	(A) 4.28 (B) 9.71 (C	$(2) 1.92 \times 10^{-10}$	(D) 5.22×1	0^{-5} (E) 1.6	6×10 ⁴
26.	The compound b $H \longrightarrow C \equiv C \longrightarrow C \longrightarrow H$ $H \longrightarrow H \longrightarrow C \longrightarrow H$	H H	•			
27.		(B) alkene				(E) olefin of the

	substance.					
	(A) specific h (D) heat capa	` ,		(C) nutrition	nal calorie co	ontent
28.	The volume of 0	.65 mol of an	ideal gas at 3	365 torr and 97 °C	C is	L.
	The volume of 0 (A) 0.054	(B) 9.5	(C) 11	(D) 41	(E) 2.4×	10 ⁻²
29.	Consider the foll	owing reaction	n at equilibri	um.		
		principle predicarrying out the mperature and mperature and mperature and mperature and mperature and	icts that the education de reaction de high pressure low pressure high pressure	re e		f CO (g) can be
	Information for	questions 30	, 31 and 32			
	The peroxydisulp	hate ion (S,C	o ₈ ²⁻) reacts wi	ith the iodide ion	in aqueous	solution via the
	reaction:	2				
	$S_2O_8^{2-}$ (aq	$1) + 3I^{-} \rightarrow 2SC$	$O_4(aq) + I_3^-(aq)$	ıq)		
	An aqueous solut	ion containing	g 0.050 M of	$S_2O_8^{2-}$ ion and (0.072 M of J	l⁻ is prepared,
	and the progress of in the table below		n followed by	measuring [I ⁻].	The data o	btained is given
	Time (s)	0.000 40	0.0 800.0	1200.0 1600		
	[Γ] (M)		0.046	0.037 0.029		
• •		0.11	C 7-1	400.0	10000	3.61
30.	The average rate				1 800.0 s is _	M/s
			1.4×10^{-5}	(C) 5.8×10^{-1}	(1	D) 3.6×10^4
	(E) 2.6×10^{-4}					
31.	The concentratio	on of S _o O _o ²⁻ re	emaining at 4	00 s is	M.	
	(A) +0.015	(B) +0.03	5 (C) –	0.007 (D)	+0.045	(E) +0.057
	, ,	, ,				
32.	The concentratio					
	(A) 0.036	(B) 0.014	(C) 0.043	(D) 0.064	(E) 0.02	29
33.	The name of CH	l₃-CH=C=CH	-СН-СН=СН	I-CH ₃ is		
	(A) 2, 3, 5 - 0	ctatriene	(B) 2, 5, 6	- octatriene		6 - octatriene
	(D) $3, 5, 6 - 0$	ctatriene	(E) 3, 4, 7	- octatriene		
34.	A sample of H ₂	gas (12.28 g)	occupies 100	.0 L at 400.0 K a	and 2.00 atm	. A sample
	_					
	weighing 9.49 g (A) 109	(B) 68.2	(C) 54.7	(D) 147	(E) 77.3	

	A second-order	/				
	is 0.71 M. The ra (A) 7.8×10^{-2}	ate constant for	this reaction is	SM	's'.	
	(A) 7.8×10^{-2}	(B) 3.8×1	10^{-2} (C) 2	2.0×10^{-2}	(D) 1.3	(E) 18
36.	(B) contain a (C) undergo	ndergo addition series of π borsubstitution real hybridized can	nds on several on actions more ea	alkenes consecutive carbo sily than saturate		ns
37.	A gas mixture o gas. If the partia (A) 11.0	l pressure of N	e is 2.75 atm, l		of Ar are in th	
	The kinetics of trate did not chan order in B.	ge when the co				
	(A) zero	$B \rightarrow P$ (B) first	(C) second	(D) third	(E) one-ha	lf
39.	CH ₃ CH ₂ C(=O)	NH, is called a	a(n)			
		_		(D) aldehyde	(E) ester	
40.	A reaction was a of 3 will cause the	e reaction rate	to	•		-
				factor of the cul		

Please insert your answer sheet inside the answer book used for section B.

SECTION B (60 Marks)

There are four questions in this section. Each question is worth 20 marks. Answer any three questions. In all calculations answers must have the correct number of significant figures.

Question 1 (20 marks)

- (a) Using appropriate examples explain
 - (i) the difference between a straight chain and a branched chain alkane.
 - (ii) An alkane and an alkyl group
 - (iii) A saturated and an unsaturated hydrocarbon.

[6]

- (b) Indicate whether each of the following molecules is capable of geometrical (cistrans) isomerism. For those that are, draw the structures:
 - (i) 1,1-dichloro-1-butene
- (ii) 2,4-dichloro-2-butene
- (iii) 1,4-dichloro-benzene
- (iv) 4,4-dimethy-2-pentyne

[4]

- (c) Using condensed structural formulas, write a balanced chemical equations for each of the following reactions:
 - (i) 2- pentene with Br₂
 - (ii) Cl₂ with benzene in presence of FeCl₃.

[4]

- (d) Give the structural formula of
 - (i) 3-methy-2-butanone
 - (ii) 2-methyl pentanal

[2]

- (e) Draw the structural formula of the compound formed by the condensation reactions between
 - (i) benzoic acid and ethanol
 - (ii) propanoic acid and dimethylamine

[4]

Question 2 (20 marks)

- (a) The specific heat of liquid bromine is 0.226 J/g-K. How much heat (J) is required to raise the temperature of 10.0 mL of bromine from 25.00 °C to 27.30 °C? The density of liquid bromine: 3.12 g/mL. [5]
- (b) Given the following reactions

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = 66.4 \text{ kJ}$
 $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ $\Delta H = -114.2 \text{ kJ}$

Calculate the enthalpy of the reaction of the nitrogen to produce nitric oxide

$$N_2(g) + O_2(g) \rightarrow 2NO(g)$$

[5]

(c) Given the data in the table below, calculate ΔH_{rm}^{o} for the reaction

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$$
 [5]

Substance	ΔH _f (kJ/mol)
H ₂ O(l)	-286
NO(g)	90
NO ₂ (g)	34
NH ₃ (g)	-46

(d) At 22 °C, $K_p = 0.070$ for the equilibrium:

$$NH_4HS(s) = NH_3(g) + H_2S(g)$$

A sample of solid NH4HS is placed in a closed container and allowed to equilibrate at 22 °C. Calculate the equilibrium partial pressure (atm) of ammonia, assuming some solid NH4HS remains. [5]

Question 3 (20 marks)

- (a) A particular first-order reaction has a rate constant of 1.35×10^2 s⁻¹ at 25.0 °C. What is the magnitude of k at 75.0 °C if E_a = 85.6 kJ/mol? [5]
- (b) Hydrogen sulphide, H₂S, is a common pollutant in industrial wastewaters. One way to remove it is to reactant the water with chlorine, in which case the following reaction occurs:

$$H_2S(aq) + Cl_2(aq) \rightarrow S(s) + 2 HCl(aq)$$

The rate of this reaction is first order with respect to each reactant. The rate constant for the disappearance of H_2S at 28 °C is 3.5 x 10^{-2} M⁻¹ s⁻¹. If at a given time the concentration of H_2S is 2.0 x 10^{-4} M and that of Cl_2 is 0.025 M, what is the rate of formation of HCl?

- (c) The K_a of hydrofluoric acid (HF) at 25.0 °C is 6.8×10^4 . What is the pH of a 0.35 M aqueous solution of HF? [5]
- (d) The K_a for HCN is 4.9×10^{-10} . What is the pH of a 0.068 M aqueous solution of sodium cyanide? [5]

Question 4 (20 marks)

(a) Calculate the density of fluorine (F ₂) gas at 25 °C and 60. kPa	[5]
--	-----

- (b) Calculate the volume of fluorine gas required to react with 2.67 g of calcium bromide to form calcium fluoride and bromine at 41.0 °C and 4.31 atm. [5]
- (c) A sample of H₂ gas (2.0 L) at 3.5 atm was combined with 1.5 L of N₂ gas at 2.6 atm pressure at a constant temperature of 25 °C into a 7.0 L flask. What is the final total pressure (atm) in the flask?. Assume the initial pressure in the flask was 0.00 atm and the temperature upon mixing was 25 °C. [5]
- (d) Using the van der Waals equation, calculate the pressure (atm) in a 22.4 L vessel containing 1.00 mol of neon gas at 100 °C.
 (a = 0.211 L² atm mol⁻², b = 0.0171 L mol⁻¹)

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	•	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
	•	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	;	
- electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 _X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
· ·	4πε _ο	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	- <i>.</i>	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton _		
Bohr	$\mu_{\rm B} = {\rm eh/2m_e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_0^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	:		joul <u>e</u> s (3 2 X 10 ⁻¹	•	1 erg 1 eV/n	nolecule	•	= =	1 X 10 96 485	⁻⁷ J kJ mol	-1
Prefix		femto	p pico 10 ⁻¹²	nano	micro	milli	centi	deci		M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIV	4.003	II	,	7	20.180	'Zc	0.	39.948	Ar	81	83.80	Ϋ́	36	131.29	Xe	54	(222)	Rn	98			
	17	VIIA					18.998	Ľ	6	35.453	บ	11	79.904	Br	35	126.90	_	53	(210)	Αt	85			
	16	VIA					15.999	0	8	32.06	S	16	78.96	Se	34	127.60	Ţc	52	(209)	Po	84			
	15	٨٨					14.007	z	7	30.974	Д	15	74.922	As	33	121.75	Sb	51	208.98	Bi	83			
	14	IVA					12.011	ر ت	9	28.086	S.	14	72.61	g	32	118.71	Sn	20	207.2	Pb	82			
	13	IIIA					10.811	B A	ς 4	26.982	ΑI	13	69.723	Ga	31	114.82	In	49	204.38	T	81			
	12	118					Atomic mass -	Symbol -	Atomic No. —				65.39	Zu	30	112.41	Cq	48	200.59	Hg	8			
	Ξ	13					Atomi	Syn	Atom				63.546	Č	29	107.87	Ag	47	196.97	Αu	79			
	10												58.69	Z	28	106.42	Pd	46	195.08	Pt	78	(267)	Unu	110
GROUPS	6	VIIIB									STN E		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	77	(266)	Une	109
G	∞										ON FLEMENTS	מומחמ ו	55.847	F.e	. 56	101:07	Ru	44	190.2	Os	9/	(265)	Ono	108
	7	VIIB									SITION	27770	54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(262)	Uns	107
	9	VIB									TDANSITI		51.996	Ċ	24	95.94	Mo	42	183.85	⋧	74	(263)	Unh	106
	5	VB											50.942	>	23	92.906	qN	4	180.95	Та	73	(292)	Ha	105
,	4	IVB											47.88	Ξ	22	91.224	Zr	40	178.49	Hf	72	(261)	Rf	104
	3	IIIB											44.956	S	21	88.906	Χ	39	138.91	*La	57	(227)	**Ac	89
	2	\\					9.012	Be	4	24.305	M	12.	40.078	ິບ	50	87.62	Sr	38	137.33	Ва	26	226.03	Ra	88
	_	<u>\</u>	1 00%		=	_	6 941	; . <u>.</u>	įπ	22.990	Z	=	39.098	×	6	85.468	Rb	37	132.91	Č	55	223	Fr	87
		PERIODS			_			r	1		,	o		_	+		v	,		٠	,		7	

*Lanthanide Series

**'Actinide Series

					11.60	Hod had	Little food to and alient and a land	1/1	7.7];		
	103	102	101	001	66	86	62	96	95	94	93	92	16	06
	<u>ئ</u> د	S.	Md	Fm	Es	ŭ	Bk	Cm	Αm	Pu .	N	D	Pa	T
-	(2007)	(457)	(607)	(757)	(757)	(157)	(747)	(747)	(243)	(244)	237.05	238.03	231.04	232.04
	7	9	69	89	. 67	99	. 65	64	63	62	19	09	59	28
-		5	,	,	;	• ;			1			!)
	Lu	Хþ	Tm	Ā	Ho	Ď	Tb	Вd	Eu	Sm	Pm	N	Pr	ű
	1/4.9/	173.04	168.93	167.26	164.93	162.50	158.93	157.25	151.96	150.36	(142)	144.24	140.12 140.91 144.24	140.12
_														

() indicates the mass number of the isotope with the longest half-life.

UNIVERSITY OF SWAZILAND

C112 SECTION A ANSWER SHEET

STUDENT ID NUMBER:	
--------------------	--

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1.	(A)	(B)	(C)	(D)	(E)		21.	(A)	(B)	(C)	(D)	(E)
2	(A)	(B)	(C)	(D)	(E)		22	(A)	(B)	(C)	(D)	(E)
3	(A)	(B)	(C)	(D)	(E)		23	(A)	(B)	(C)	(D)	(E)
4	(A)	(B)	(C)	(D)	(E)		24	(A)	(B)	(C)	(D)	(E)
5	(A)	(B)	(C)	(D)	(E)		25	(A)	(B)	(C)	(D)	(E)
6	(A)	(B)	(C)	(D)	(E)		26	(A)	(B)	(C)	(D)	(E)
7	(A)	(B)	(C)	(D)	(E)		27	(A)	(B)	(C)	(D)	(E)
8	(A)	(B)	(C)	(D)	(E)		28	(A)	(B)	(C)	(D)	(E)
9	(A)	(B)	(C)	(D)	(E)	•	29	(A)	(B)	(C)	(D)	(E)
10	(A)	(B)	(C)	(D)	(E)		30	(A)	(B)	(C)	(D)	(E)
11	(A)	(B)	(C)	(D)	(E)		31	(A)	(B)	(C)	(D)	(E)
12	(A)	(B)	(C)	(D)	(E)		32	(A)	(B)	(C)	(D)	(E)
13	(A)	(B)	(C)	(D)	(E)		33	(A)	(B)	(C)	(D)	(E)
14	(A)	(B)	(C)	(D)	(E)		34	(A)	(B)	(C)	(D)	(E)
15	(A)	(B)	(C)	(D)	(E)		35	(A)	(B)	(C)	(D)	(E)
16	(A)	(B)	(C)	(D)	(E)		36	(A)	(B)	(C)	(D)	(E)
17	(A)	(B)	(C)	(D)	(E)	•	37	(A)	(B)	(C)	(D)	(E)
18	(A)	(B)	(C)	(D)	(E)		38	(A)	(B)	(C)	(D)	(E)
19	(A)	(B)	(C)	(D)	(E)		39	(A)	(B)	(C)	(D)	(E)
20	(A)	(B)	(C)	(D)	(E)		40	(A)	(B)	(C)	(D)	(E)