UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2010/11

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 50 marks)
- (ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1.	The symbol for the (A) Me	e element merc (B) Pb	ury is (C) Sn	(D) Hg	(E) none of these					
2.	A small amount of (A) homogene (D) pure subst	ous mixture		n example of a eneous mixture						
3.	Which one of the f (A) S, sodium				neon (E) B, bromine					
4.	Which one of the talk (A) concrete (E) milk				(D) elemental copper					
5.	Which of the following are chemical processes? 1. rusting of a nail 2. freezing of water 3. decomposition of water into hydrogen and oxygen gases 4. compression of oxygen gas (A) 2, 3, 4 (B) 1, 3, 4 (C) 1, 3 (D) 1, 2 (E) 1, 4									
6.	Accuracy refers to (A) how close a m (B) how close a m (C) how close a m (D) how close a m (E) how close a m	neasured numb neasured numb neasured numb neasured numb	er is to the ca er is to other er is to the tr	measured number ue value	rs					
7.	Which atom has th (A) carbon-14 (E) neon-20				(D) fluorine-19					
8.	There are of \$^{132}_{54}\$Xe.	electrons,		protons, and	neutrons in an atom					
	= :		, 54, 132	(C) 78, 78, 54	(D) 54, 54, 78					

9. The element X has two naturally occurring isotopes. The masses (amu) and % abundances of the isotopes are given in the Table below. The average atomic mass of the element is Isotope | Abundance (%) | Mass (amu) 31χ 35.16 31.16 34χ 64.84 34.30 (A) 30.20(C) 34.02 (B) 33.20 (D) 35.22 (E) 32.73 10. Of the following, only is not a metalloid. (A) B (B) Al (C) Si (D) Ge (E) As 11. An element in the upper right corner of the periodic table (A) is either a metal or metalloid (B) is definitely a metal (C) is either a metalloid or a non-metal (D) is definitely a non-metal (E) is definitely a metalloid 12. Which one of the following molecular formulas is also an empirical formula? (A) $C_6H_6O_2$ (B) C_2H_6SO (C) H_2O_2 (D) $H_2P_4O_6$ (E) C_6H_6 13. Which species has 54 electrons? (B) $^{128}_{52}\text{Te}^{2-}$ (A) $^{132}_{54}$ Xe⁺ (C) $^{118}_{50}$ Sn²⁺ (D) $^{112}_{48}$ Cd 14. Which of the following compounds would you expect to be ionic? (A) SF₆(B) H₂O (D) NH, (C) H_2O_2 (E) CaO 15. Which species below is the nitride ion? (A) Na⁺ (B) NO,-(C) NO,-(D) NH₄⁺ (E) N^{3-} 16. Which formula/name pair is incorrect? (B) $Fe_2(SO_3)_3$ (A) FeSO₄ iron(II) sulphate iron(III) sulphite (C) FeS (D) FeSO, iron(II) sulphide iron(II) sulphite (E) Fe₂(SO₄)₃ iron(III) sulphide 17. When the following equation is balanced, the coefficients are

19. The formula of nitrobenzene is C₆H₅NO₂. The molecular weight of this compound is amu.

(A) 107.11 (B) 43.03 (C) 109.10 (D) 123.11 (E) 3.06

20.	The mass % of H	I in methane (CH ₄) is	<u> </u>		
	(A) 25.13	(B) 4.032	(C) 74.87	(D) 92.26		3
21.	One mole of	conta	ains the larges	t number of ato	ms.	
	(A) S_8	(B) C ₁₀ H ₈	(C) Al ₂ (SO	$(D)_{4}$	Na ₃ PO ₄	(E) Cl ₂
22.	A sample of CH					
	$(A) 2.2 \times 10^{23}$	(B) 38	$(C)3.3\times10^{24}$	(D)	4.4×10^{23}	(E) 9.5
23.			.011×10 ⁻⁵	in 1.773×10 ¹⁷ (C) 1.517×		as?
	Which of the following the HCl , HCl HCl HCl	$_2$, NH_3 ,	KCl			
	` '	, ,		$HC_2H_3O_2$, KC_2	-	, NH ₃ , KCl
25.	What are the spe (A) K ⁺ and H (E) OH ⁻ only			-	_	O ₃ (aq)? D) H ⁺ and NO3 ⁻
	The balanced net Na ₂ CO ₃ and C	aCl ₂ are mixed	l is	_·		
		•	_			$aq) \rightarrow 2NaCl (aq)$
	C) Na ⁺ (aq) + Cl ⁻ E) Na ₂ CO ₃ (aq) -	_	_		q) + CO3 ²⁻ (8	$aq) \rightarrow CaCO_3(s)$
	The concentration solution was diluted (A) 0.800					of a 2.00 M
28.	A radio station b (A) 3.10			e wavelength o		
29.	What is the de B: $(A) 6.6 \times 10^{-30}$					need of 50 m/s? (E) 3.8×10 ³⁴
30.	,	itals in a given (B) azimutl		e the same valu magnetic (D		_ quantum number. (E) B and C
	Which of the sub quantum number	?			-	
	(A) 4 f	(B) 4 d	(C) 4 p	(D) 4 s	(E) none	of the above

32. An electron cannot have the quantum numbers $n = 1, l = 1, m_l = 1, m_$

33. Which set of three quantum numbers (n, l, ml) corresponds to a 3d orbital?

(A) 3, 2, 2

(B) 3, 3, 2

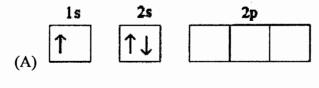
(C) 3, 2, 3

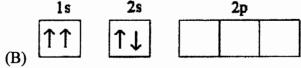
(D) 2, 1, 0

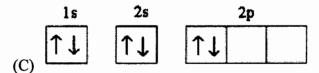
(E) 2, 3, 3

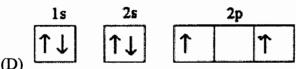
34. Which of the following is a valid set of four quantum numbers?(n, l, ml, ms)

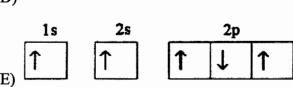
(A) 2, 1, 0, +1/2


(B) 2, 2, 1, -1/2


(C) 1, 0, 1, +1/2


(D) 2, 1, +2, +1/2


(E) 1, 1, 0, -1/2


35. Which electron configuration denotes an atom in its ground state?

36. The ground state electron configuration of Ga is _____

- (A) $1s^2 2s^2 3s^2 3p^6 3d^{10} 4s^2 4p^1$
- (B) $1s^2 2\overline{s^2 2p^6 3s^2 3p^6} 4s^2 4d^{10} 4p^1$
- (C) $1s^22s^22p^63s^23p^63d^{10}4s^24p^1$
- (D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4d^1$

(E) $[Ar] 4s^2 3d^{11}$

37. The ground state configuration of fluorine is

- (A) $[He]2s^22p^2$
- (B) $[He]2s^22p^3$
- (C) $[He]2s^22p$

(D) $[He]2s^22p^5$

(E) $[He]2s^22p^6$

38. Which two elements have the same ground-state electron configuration?

- (A) Pd and Pt
- (B) Cu and Ag
- (C) Fe and Cu

(D) Cl and Ar

(E) No two elements have the same ground-state electron configuration.

	Which element hose of fluorine	-	cted to have ch	nemical and ph	ysical properties close	st to
	(A) S		(C) Ne	(D) O	(E) Cl	
40. 0	(A) $Mg > N$ (C) $Si > P$	s, which gives to the state of	Ar (B) Mg (D)	Ar > Si > P		and Ar?
41.	Which of the fo	llowing is an is	oelectronic se	ries?		
		As^{3} , Te^{2}			C) S, Cl, Ar, K	
	(D) $Si^{2-}, P^{2-}, Si^{2-}, Si^{2-}$	S ²⁻ ,Cl ²⁻	$(E) O^{2^{-}}, F^{-}, N$	le,Na+		
42. (Of the following	atoms, which	has the larges	t first ionizatio	n energy?	
	(A) Br	(B) O	(C) C	(D) P	(E) I	
43.	The ion with the	smallest diam	eter is	•		
	(A) Br ⁻	(B) Cl ⁻	(C) I ⁻	(D) F	(E) O^{2-}	
44. ′		arbonated wate of sulfur l oxides	(B) reaction	of CO ₂ and I	I ₂ O (C) addition	n of acid
45. I	Based on the oc	tet rule, phosph	orus most like	ely forms a	ion.	
	(A) P^{3+}	(B) P ³⁻	(C) P ³⁺	(D) P ³⁻	(E) P ⁺	
46. Y	electron config O Sr		Br		order to achieve a not	ole gas
		_		2		
47.	What is the electory (A) [Ar]4s ¹ 3 (E) [Ne]3s ² 3	tron configurat d ⁶ (B) [A p ¹⁰	ion for the Co Ar]4s ⁰ 3d ⁷	(C) [Ar]4s ⁰	3d ⁵ (D) [Ar]4s ²	3d ⁹
48.	The Lewis struc	ture of PF ₃ sho	ws that the cer	ntral phosphoru	s atom has	
	nonbonding ar (A) 2, 2	d	bonding elect	ron pairs.		
	(A) 2, 2	(B) 1, 3	(C) 3, 1	(D) 1, 2	(E) 3, 3	
49.	The molecular g	geometry of the	CS ₂ molecul	e is	<u></u> .	
	(A) linear	(B) bent	(C) tetrahedra	(D) trigor	nal planar (E) T-sh	aped
50.	Of the molecule	s below, only	is	polar.		
	(A) SbF_5	(B) AsH_3	(C) I_2	(D) SF ₆	(E) CH ₄	

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions. In all calculations answers must have the correct number of significant figures.

Question 1 (25 marks)

- (a) A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 50.00 gram sample of the alcohol produced 95.50 grams of CO₂ and 58.70 grams of H₂O. What is the empirical formula of the alcohol? [9]
- (b) Potassium superoxide, KO₂, is often used in masks by fire-fighters because KO₂ reacts with CO₂ to release molecular oxygen. Experiments indicate that 2 mol KO₂(s)reacts with each mole of CO₂(g). The products are K₂CO₃(s) and O₂(g).
 - (i) Write a balanced equation for the reaction of KO₂(s) and CO₂(g0.
 - (ii) What mass of KO_2 is needed to consume 18.0 g CO_2 ?
 - (iii) What mass of O₂ is produce during this reaction?

[10]

(c) Draw the Lewis structures of the following species

(i) SbF₅

(ii) TeF₄

[6]

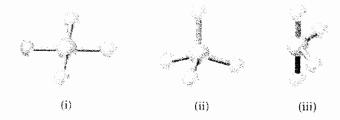
Question 2 (25 marks)

(a) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water. $Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$

The yield of MgO is 3.60 g. What is the percent yield in the reaction? [9]

.

- (b) Barium azide is 62.04% Ba and 37.96% N. Each azide ion has a net charge of -1.
 - (i) Determine the chemical formula the azide ion.
 - (ii) Write three resonance structures of the azide ion.
 - (iii) Which structure is most important?


[7]

- (c) Consider the following molecules or ions of sulphur: SO₂, SO₃, and SO₃²-
 - (i) For each species write a single Lewis structure that obeys the octet rule.
 - (ii) Calculate the oxidation number of S in each species
 - (iii) Calculate the formal charges on all atoms in each species..
 - (iv) Arrange these molecules/ions in order of increasing S-O bond distance.

[9]

Question 3 (25 marks)

- (a) The rays of the Sun that cause tanning and burning are in the ultraviolet portion of the electromagnetic spectrum. These rays are classified by wavelength. UV-A radiation has wavelengths in the range of 320 380 nm, whereas the UV-B radiation has wavelengths in the range 290 320 nm.
 - (i) Calculate the frequency of radiation that has wavelength 320 nm.
 - (ii) Calculate the energy of a mole of 320 nm photons.
 - (iii) Which are more energetic, photons of UV-A or UV-B radiation?
 - (iv) UV-B radiation is considered a greater cause of sunburn in humans than UV-A radiation. Is this observation consistent with your answer to (iv)? [6]
- (b) (i) Arrange the following in order of increasing size F, K, Br, Rb
 - (ii) Arrange the following in order of increasing first ionization energy: Al, Si, S, Cl. Ar.
 - (iii) Arrange the following in order of increasing size: K⁺, Ca²⁺, Cl⁻, Ar [6]
- (c) The figure below shows the ball and stick drawings of an AF₄ molecule.

- (i) For each shape, give the electron domain geometry on which the molecular geometry is based.
- (ii) For each shape, how many nonbonding electron domains are there on atom A?
- (iii) Which of the following molecules will lead to an AF₄ molecule with the shape in (iii): Be, C, S, Se, Si, Xe?
- (iv) Name an element A that is expected to lead to the structure in (i). Explain your reasoning.
- (v) Indicate which molecular geometry will give a polar and which give a non-polar molecule. [13]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	. Ÿ	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
	•	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h -	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	;	
electron	m,	9.109 39 X 10 ⁻³¹ Kg
proton	m _p :	1.672 62 X 10 ⁻²⁷ Kg
neutron	m _n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
· · · · · · · · · · · · · · · · · · ·	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	- :	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton	<u></u> -	
Bohr	$\mu_{\rm B} = {\rm eh}/2{\rm m_e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = eh/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	ge	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	Ğ : "	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J			1 erg 1 eV/molecule			=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹		
Prefix	kes	f femto 10 ⁻¹⁵	pico	nano	μ micro	milli	centi			M mega 10 ⁶	G - giga 10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	lle	7	20.180	Ne	01	39.948	Ar	<u>&</u>	83.80	Kr	36	131.29	Xe	54	(222)	Rn	98			
	17	VIIA				18.998	1 24	6	35.453	ご	11	79.904	Br	35	126.90	_	53	(210)	At	85			
	16	۸I۸				15.999	0	8	32.06	S	91	78.96	Se	34	127.60	Ţe	52	(200)	Po	84			
	15	۸۸				14.007	z	7	30.974	Ъ	15	74.922	As	33	121.75	$^{ m Q}$	51	208.98	Bi	. 83			
	14	IVA				12.011	၁	9	28.086	Si	4	72.61	ğ	32	118.71	Sn	50	207.2	Pb	82			
	13	HIA				10.811	B •	م	26.982	Ψ	13	69.723	Сa	31	114.82	II.	49	204.38	Į	81			
	12	<u>=</u> B				Atomic mass —	Symbol -	Atomic No.				65.39	Zn	30	112.41	Cq	48	200.59	$_{ m Hg}$	80			-
	11	<u>B</u>					Syn	Atom				63.546	Cn	. 29	107.87	Ag	47	196.97	γn	79			
GROUPS	10											58.69	ž	28	106.42	Pd	46	195.08	Pt	78	(267)	Unn	110
	6	VIIIB							ENTS		58.933	ည	27	102.91	Rh	45	192.22	Ir	77	(392)	Une	601	
	∞									N ELEM		55.847	Fe	56	101:07	Ru	44	190.2	Os	9/	(265)	Uno	108
	7	VIIB								TRANSITION ELEMENTS		54.938	Mn	25	98.907	Ţc	43	186.21	Re	75	(262)	Uns	107
	9	VIB									TRAI	51.996	Ç	24	95.94	Mo	42	183.85	≩	74	(263)	Unh	901
	5	ΛB										50.942	>	23	92.906	SP	41	180.95	Та	73	(262)	Ha	105
	4	IVB										47.88	Ξ	22	91.224	Zr	40	178.49	HŁ	72	(261)	Rf	104
	3	IIIB										44.956	Š	21	88.906	>	39	138.91	*La	57	(227)	**Ac	68
	2	ΙΙΥ				9.012	Be	4	24.305	Mg	12	40.078	c _z	20	87.62	Š	38	137.33	Ba	99	226.03	Ra	88
	1	≤	1.008	=	_	6.941	Ľ	3	22.990	Na	=	39.098	×	61	85.468	Rb	37	132.91	Č	55	223	Fr	87
		PERIODS					7			60			4			v			9			7	

Series	
de	
ani	
ıth	
Ľ	
*	

** Actinide Series
**Actin

Gd Th Dv Ho Er Tm Vh		3 64 65 66 67 68 69 70 71	(247) (247) (251) (252) (253) (258) (259)	Cm Bk Cf Es Fm Md	96 97 98 99 100 101 102	number of the isotope with the longest half-life.
_	·		-	Es	66	f-life.
162.50	Dy	99	(251)	Ct	86	gest ha
158.93	Tb	65	(247)	Bk	26	i the lon
157.25	P.S	64	(247)	Cm	96	ope with
151.96	Eu	63	(243)	Am	95	fthe isol
150.36	Sm	62	(244)	Pu	94	umber o
(145)	Pm	19	237.05	Np	93	s the mass n
144.24	PN	09	238.03	Ω	92	cates the
140.91	Ce Pr Nd	59	231.04	Th Pa U	16	() indi
140.12	ပိ	28	232.04	Th	06	

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STU	JDENT	ID	NUMBE	R:	

Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question.

1.	(A)	(B)	(C)	(D)	(E)
2.	(A)	(B)	(C)	(D)	(E)
3.	(A)	(B)	(C)	(D)	(E)
4.	(A)	(B)	(C)	(D)	(E)
5.	(A)	(B)	(C)	(D)	(E)
6.	(A)	(B)	(C)	(D)	(E)
7.	(A)	(B)	(C)	(D)	(E)
8.	(A)	(B)	(C)	(D)	(E)
9.	(A)	(B)	(C)	(D)	(E)
10.	(A)	(B)	(C) .	(D)	(E)
11.	(A)	(B)	(C)	(D)	(E)
12.	(A)	(B)	(C)	(D)	(E)
13.	(A)	(B)	(C)	(D)	(E)
14.	(A)	(B)	(C)	(D)	(E)
15.	(A)	(B)	(C)	(D)	(E)
16.	(A)	(B)	(C)	(D)	(E)
17.	(A)	(B)	(C)	(D)	(E)
18.	(A)	(B)	(C) ·	(D)	(E)
19.	(A)	(B)	(C)	(D)	(E)
20.	(A)	(B)	(C)	(D)	(E)
21.	(A)	(B)	(C)	(D)	(E)
22.	(A)	(B)	(C)	(D)	(E)
23.	(A)	(B)	(C)	(D)	(E)
24.	(A)	(B)	(C)	(D)	(E)

STUDENT ID NUMBER_____

25.	(A)	(B)	(C)	(D)	(E)
26.	(A)	(B)	(C)	(D)	(E)
27.	(A)	(B)	(C)	(D)	(E)
28.	(A)	(B)	(C)	(D)	(E)
29.	(A)	(B)	(C)	(D)	(E)
30.	(A)	(B)	(C)	(D)	(E)
31.	(A)	(B)	(C)	(D)	(E)
32.	(A)	(B)	(C)	(D)	(E)
33.	(A)	(B)	(C)	(D)	(E)
34.	(A)	(B)	(C)	(D)	(E)
35.	(A)	(B)	(C)	(D)	(E)
36.	(A)	(B)	(C)	(D)	(E)
37.	(A)	(B)	(C)	(D)	(E)
38.	(A)	(B)	(C)	(D)	(E)
39.	(A)	(B)	(C)	(D)	(E)
40.	(A)	(B)	(C) ·	(D)	(E)
41.	(A)	(B)	(C)	(D)	(E)
42.	(A)	(B)	(C)	(D)	(E)
43.	(A)	(B)	(C)	(D)	(E)
44.	(A)	(B)	(C)	(D)	(E)
45.	(A)	(B)	(C)	(D)	(E)
46.	(A)	(B)	(C)	(D)	(E)
47.	(A)	(B)	(C)	(D)	(E)
48.	(A)	(B)	(C) ·	(D)	(E)
49.	(A)	(B)	(C)	(D)	(E)
50.	(A)	(B)	(C)	(D)	(E)