UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2010/11 TITLE OF PAPER: INTRODUCTORY CHEMISTRY I **COURSE NUMBER: C111** TIME: THREE (3) HOURS # **INSTRUCTIONS:** - (i) Answer all questions in section A (total 50 marks) - (ii) Answer any 2 questions in section B (Each question is 25 marks) Non-programmable electronic calculators may be used. A data sheet, a periodic table and answer sheet for section A are attached DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR. # **SECTION A (50 Marks)** This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions. | 1. | The symbol for the (A) Me | e element merc
(B) Pb | ury is
(C) Sn | (D) Hg | (E) none of these | | | | | | |----|--|--|--|----------------------------------|----------------------|--|--|--|--|--| | 2. | A small amount of
(A) homogene
(D) pure subst | ous mixture | | n example of a
eneous mixture | | | | | | | | 3. | Which one of the f (A) S, sodium | | | | neon (E) B, bromine | | | | | | | 4. | Which one of the talk (A) concrete (E) milk | | | | (D) elemental copper | | | | | | | 5. | Which of the following are chemical processes? 1. rusting of a nail 2. freezing of water 3. decomposition of water into hydrogen and oxygen gases 4. compression of oxygen gas (A) 2, 3, 4 (B) 1, 3, 4 (C) 1, 3 (D) 1, 2 (E) 1, 4 | | | | | | | | | | | 6. | Accuracy refers to (A) how close a m (B) how close a m (C) how close a m (D) how close a m (E) how close a m | neasured numb
neasured numb
neasured numb
neasured numb | er is to the ca
er is to other
er is to the tr | measured number
ue value | rs | | | | | | | 7. | Which atom has th
(A) carbon-14
(E) neon-20 | | | | (D) fluorine-19 | | | | | | | 8. | There are
of \$^{132}_{54}\$Xe. | electrons, | | protons, and | neutrons in an atom | | | | | | | | = : | | , 54, 132 | (C) 78, 78, 54 | (D) 54, 54, 78 | | | | | | 9. The element X has two naturally occurring isotopes. The masses (amu) and % abundances of the isotopes are given in the Table below. The average atomic mass of the element is Isotope | Abundance (%) | Mass (amu) 31χ 35.16 31.16 34χ 64.84 34.30 (A) 30.20(C) 34.02 (B) 33.20 (D) 35.22 (E) 32.73 10. Of the following, only is not a metalloid. (A) B (B) Al (C) Si (D) Ge (E) As 11. An element in the upper right corner of the periodic table (A) is either a metal or metalloid (B) is definitely a metal (C) is either a metalloid or a non-metal (D) is definitely a non-metal (E) is definitely a metalloid 12. Which one of the following molecular formulas is also an empirical formula? (A) $C_6H_6O_2$ (B) C_2H_6SO (C) H_2O_2 (D) $H_2P_4O_6$ (E) C_6H_6 13. Which species has 54 electrons? (B) $^{128}_{52}\text{Te}^{2-}$ (A) $^{132}_{54}$ Xe⁺ (C) $^{118}_{50}$ Sn²⁺ (D) $^{112}_{48}$ Cd 14. Which of the following compounds would you expect to be ionic? (A) SF₆(B) H₂O (D) NH, (C) H_2O_2 (E) CaO 15. Which species below is the nitride ion? (A) Na⁺ (B) NO,-(C) NO,-(D) NH₄⁺ (E) N^{3-} 16. Which formula/name pair is incorrect? (B) $Fe_2(SO_3)_3$ (A) FeSO₄ iron(II) sulphate iron(III) sulphite (C) FeS (D) FeSO, iron(II) sulphide iron(II) sulphite (E) Fe₂(SO₄)₃ iron(III) sulphide 17. When the following equation is balanced, the coefficients are 19. The formula of nitrobenzene is C₆H₅NO₂. The molecular weight of this compound is amu. (A) 107.11 (B) 43.03 (C) 109.10 (D) 123.11 (E) 3.06 | 20. | The mass % of H | I in methane (| CH ₄) is | <u> </u> | | | |-----|--|------------------------------------|-------------------------|--------------------------------------|---------------------------------|--| | | (A) 25.13 | (B) 4.032 | (C) 74.87 | (D) 92.26 | | 3 | | 21. | One mole of | conta | ains the larges | t number of ato | ms. | | | | (A) S_8 | (B) C ₁₀ H ₈ | (C) Al ₂ (SO | $(D)_{4}$ | Na ₃ PO ₄ | (E) Cl ₂ | | 22. | A sample of CH | | | | | | | | $(A) 2.2 \times 10^{23}$ | (B) 38 | $(C)3.3\times10^{24}$ | (D) | 4.4×10^{23} | (E) 9.5 | | 23. | | | .011×10 ⁻⁵ | in 1.773×10 ¹⁷ (C) 1.517× | | as? | | | Which of the following the HCl , HCl HCl HCl | $_2$, NH_3 , | KCl | | | | | | ` ' | , , | | $HC_2H_3O_2$, KC_2 | - | , NH ₃ , KCl | | 25. | What are the spe (A) K ⁺ and H (E) OH ⁻ only | | | - | _ | O ₃ (aq)?
D) H ⁺ and NO3 ⁻ | | | The balanced net Na ₂ CO ₃ and C | aCl ₂ are mixed | l is | _· | | | | | | • | _ | | | $aq) \rightarrow 2NaCl (aq)$ | | | C) Na ⁺ (aq) + Cl ⁻
E) Na ₂ CO ₃ (aq) - | _ | _ | | q) + CO3 ²⁻ (8 | $aq) \rightarrow CaCO_3(s)$ | | | The concentration solution was diluted (A) 0.800 | | | | | of a 2.00 M | | 28. | A radio station b
(A) 3.10 | | | e wavelength o | | | | 29. | What is the de B: $(A) 6.6 \times 10^{-30}$ | | | | | need of 50 m/s?
(E) 3.8×10 ³⁴ | | 30. | , | itals in a given
(B) azimutl | | e the same valu
magnetic (D | | _ quantum number.
(E) B and C | | | Which of the sub
quantum number | ? | | | - | | | | (A) 4 f | (B) 4 d | (C) 4 p | (D) 4 s | (E) none | of the above | 32. An electron cannot have the quantum numbers $n = 1, l = 1, m_l m_$ 33. Which set of three quantum numbers (n, l, ml) corresponds to a 3d orbital? (A) 3, 2, 2 (B) 3, 3, 2 (C) 3, 2, 3 (D) 2, 1, 0 (E) 2, 3, 3 34. Which of the following is a valid set of four quantum numbers?(n, l, ml, ms) (A) 2, 1, 0, +1/2 (B) 2, 2, 1, -1/2 (C) 1, 0, 1, +1/2 (D) 2, 1, +2, +1/2 (E) 1, 1, 0, -1/2 35. Which electron configuration denotes an atom in its ground state? 36. The ground state electron configuration of Ga is _____ - (A) $1s^2 2s^2 3s^2 3p^6 3d^{10} 4s^2 4p^1$ - (B) $1s^2 2\overline{s^2 2p^6 3s^2 3p^6} 4s^2 4d^{10} 4p^1$ - (C) $1s^22s^22p^63s^23p^63d^{10}4s^24p^1$ - (D) $1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4d^1$ (E) $[Ar] 4s^2 3d^{11}$ 37. The ground state configuration of fluorine is - (A) $[He]2s^22p^2$ - (B) $[He]2s^22p^3$ - (C) $[He]2s^22p$ (D) $[He]2s^22p^5$ (E) $[He]2s^22p^6$ 38. Which two elements have the same ground-state electron configuration? - (A) Pd and Pt - (B) Cu and Ag - (C) Fe and Cu (D) Cl and Ar (E) No two elements have the same ground-state electron configuration. | | Which element
hose of fluorine | - | cted to have ch | nemical and ph | ysical properties close | st to | |-------|--|---|--|--------------------------|---|-----------------| | | (A) S | | (C) Ne | (D) O | (E) Cl | | | 40. 0 | (A) $Mg > N$
(C) $Si > P$ | s, which gives to the state of | Ar (B)
Mg (D) | Ar > Si > P | | and Ar? | | 41. | Which of the fo | llowing is an is | oelectronic se | ries? | | | | | | As^{3} , Te^{2} | | | C) S, Cl, Ar, K | | | | (D) $Si^{2-}, P^{2-}, Si^{2-}, Si^{2-}$ | S ²⁻ ,Cl ²⁻ | $(E) O^{2^{-}}, F^{-}, N$ | le,Na+ | | | | 42. (| Of the following | atoms, which | has the larges | t first ionizatio | n energy? | | | | (A) Br | (B) O | (C) C | (D) P | (E) I | | | 43. | The ion with the | smallest diam | eter is | • | | | | | (A) Br ⁻ | (B) Cl ⁻ | (C) I ⁻ | (D) F | (E) O^{2-} | | | 44. ′ | | arbonated wate
of sulfur
l oxides | (B) reaction | of CO ₂ and I | I ₂ O (C) addition | n of acid | | 45. I | Based on the oc | tet rule, phosph | orus most like | ely forms a | ion. | | | | (A) P^{3+} | (B) P ³⁻ | (C) P ³⁺ | (D) P ³⁻ | (E) P ⁺ | | | 46. Y | electron config
O Sr | | Br | | order to achieve a not | ole gas | | | | _ | | 2 | | | | 47. | What is the electory (A) [Ar]4s ¹ 3 (E) [Ne]3s ² 3 | tron configurat
d ⁶ (B) [A
p ¹⁰ | ion for the Co
Ar]4s ⁰ 3d ⁷ | (C) [Ar]4s ⁰ | 3d ⁵ (D) [Ar]4s ² | 3d ⁹ | | 48. | The Lewis struc | ture of PF ₃ sho | ws that the cer | ntral phosphoru | s atom has | | | | nonbonding ar
(A) 2, 2 | d | bonding elect | ron pairs. | | | | | (A) 2, 2 | (B) 1, 3 | (C) 3, 1 | (D) 1, 2 | (E) 3, 3 | | | 49. | The molecular g | geometry of the | CS ₂ molecul | e is | <u></u> . | | | | (A) linear | (B) bent | (C) tetrahedra | (D) trigor | nal planar (E) T-sh | aped | | 50. | Of the molecule | s below, only | is | polar. | | | | | (A) SbF_5 | (B) AsH_3 | (C) I_2 | (D) SF ₆ | (E) CH ₄ | | Please insert your answer sheet inside the answer book used for section B. # **SECTION B (50 Marks)** There are three questions in this section. Each question is worth 25 marks. Answer any two questions. In all calculations answers must have the correct number of significant figures. ### Question 1 (25 marks) - (a) A certain alcohol contains only three elements, carbon, hydrogen, and oxygen. Combustion of a 50.00 gram sample of the alcohol produced 95.50 grams of CO₂ and 58.70 grams of H₂O. What is the empirical formula of the alcohol? [9] - (b) Potassium superoxide, KO₂, is often used in masks by fire-fighters because KO₂ reacts with CO₂ to release molecular oxygen. Experiments indicate that 2 mol KO₂(s)reacts with each mole of CO₂(g). The products are K₂CO₃(s) and O₂(g). - (i) Write a balanced equation for the reaction of KO₂(s) and CO₂(g0. - (ii) What mass of KO_2 is needed to consume 18.0 g CO_2 ? - (iii) What mass of O₂ is produce during this reaction? [10] (c) Draw the Lewis structures of the following species (i) SbF₅ (ii) TeF₄ [6] #### Question 2 (25 marks) (a) A 3.82-g sample of magnesium nitride is reacted with 7.73 g of water. $Mg_3N_2 + 3H_2O \rightarrow 2NH_3 + 3MgO$ The yield of MgO is 3.60 g. What is the percent yield in the reaction? [9] - (b) Barium azide is 62.04% Ba and 37.96% N. Each azide ion has a net charge of -1. - (i) Determine the chemical formula the azide ion. - (ii) Write three resonance structures of the azide ion. - (iii) Which structure is most important? [7] - (c) Consider the following molecules or ions of sulphur: SO₂, SO₃, and SO₃²- - (i) For each species write a single Lewis structure that obeys the octet rule. - (ii) Calculate the oxidation number of S in each species - (iii) Calculate the formal charges on all atoms in each species.. - (iv) Arrange these molecules/ions in order of increasing S-O bond distance. [9] ## Question 3 (25 marks) - (a) The rays of the Sun that cause tanning and burning are in the ultraviolet portion of the electromagnetic spectrum. These rays are classified by wavelength. UV-A radiation has wavelengths in the range of 320 380 nm, whereas the UV-B radiation has wavelengths in the range 290 320 nm. - (i) Calculate the frequency of radiation that has wavelength 320 nm. - (ii) Calculate the energy of a mole of 320 nm photons. - (iii) Which are more energetic, photons of UV-A or UV-B radiation? - (iv) UV-B radiation is considered a greater cause of sunburn in humans than UV-A radiation. Is this observation consistent with your answer to (iv)? [6] - (b) (i) Arrange the following in order of increasing size F, K, Br, Rb - (ii) Arrange the following in order of increasing first ionization energy: Al, Si, S, Cl. Ar. - (iii) Arrange the following in order of increasing size: K⁺, Ca²⁺, Cl⁻, Ar [6] - (c) The figure below shows the ball and stick drawings of an AF₄ molecule. - (i) For each shape, give the electron domain geometry on which the molecular geometry is based. - (ii) For each shape, how many nonbonding electron domains are there on atom A? - (iii) Which of the following molecules will lead to an AF₄ molecule with the shape in (iii): Be, C, S, Se, Si, Xe? - (iv) Name an element A that is expected to lead to the structure in (i). Explain your reasoning. - (v) Indicate which molecular geometry will give a polar and which give a non-polar molecule. [13] # General data and fundamental constants | Quantity | Symbol | Value | |---------------------------------------|--|---| | Speed of light | c | 2.997 924 58 X 10 ⁸ m s ⁻¹ | | Elementary charge | e | 1.602 177 X 10 ⁻¹⁹ C | | Faraday constant | $F = N_A e$ | 9.6485 X 10 ⁴ C mol ⁻¹ | | Boltzmann constant | k | 1.380 66 X 10 ⁻²³ J K ⁻¹ | | Gas constant | $R = N_A k$ | 8.314 51 J K ⁻¹ mol ⁻¹ | | | . Ÿ | 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ | | | • | 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ | | Planck constant | h - | 6.626 08 X 10 ⁻³⁴ J s | | | $\hbar = h/2\pi$ | 1.054 57 X 10 ⁻³⁴ J s | | Avogadro constant | N_A | 6.022 14 X 10 ²³ mol ⁻¹ | | Atomic mass unit | u | 1.660 54 X 10 ⁻²⁷ Kg | | Mass | ; | | | electron | m, | 9.109 39 X 10 ⁻³¹ Kg | | proton | m _p : | 1.672 62 X 10 ⁻²⁷ Kg | | neutron | m _n | 1.674 93 X 10 ⁻²⁷ Kg | | Vacuum permittivity | $\varepsilon_0 = 1/c^2 \mu_0$ | 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ | | · · · · · · · · · · · · · · · · · · · | 4πε, | 1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹ | | Vacuum permeability | μ_{o} | $4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | - : | $4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$ | | Magneton | <u></u> - | | | Bohr | $\mu_{\rm B} = {\rm eh}/2{\rm m_e}$ | 9.274 02 X 10 ⁻²⁴ J T ⁻¹ | | nuclear | $\mu_N = eh/2m_p$ | 5.050 79 X 10 ⁻²⁷ J T ⁻¹ | | g value | ge | 2.002 32 | | Bohr radius | $a_o = 4\pi \epsilon_o \hbar/m_e e^2$ | 5.291 77 X 10 ⁻¹¹ m | | Fine-structure constant | $\alpha = \mu_0 e^2 c/2h$ | 7.297 35 X 10 ⁻³ | | Rydberg constant | $R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$ | 1.097 37 X 10 ⁷ m ⁻¹ | | Standard acceleration | | | | of free fall | g | 9.806 65 m s ⁻² | | Gravitational constant | Ğ : " | 6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻² | | | | | # **Conversion factors** | 1 cal = 1 eV = | | 4.184 joules (J)
1.602 2 X 10 ⁻¹⁹ J | | | 1 erg
1 eV/molecule | | | = | 1 X 10 ⁻⁷ J
96 485 kJ mol ⁻¹ | | | |----------------|-----|---|------|------|------------------------|-------|-------|---|---|------------------------------|--------------------| | Prefix | kes | f
femto
10 ⁻¹⁵ | pico | nano | μ
micro | milli | centi | | | M
mega
10 ⁶ | G -
giga
10° | # PERIODIC TABLE OF ELEMENTS | | 18 | VIIIA | 4.003 | lle | 7 | 20.180 | Ne | 01 | 39.948 | Ar | <u>&</u> | 83.80 | Kr | 36 | 131.29 | Xe | 54 | (222) | Rn | 98 | | | | |--------|----|------------|-------|-----|---|---------------|-------------|------------|--------|---------------------|--------------|--------|----------------|--------|--------|-----------|--------|--------|------------|-------|--------|------|-----| | | 17 | VIIA | | | | 18.998 | 1 24 | 6 | 35.453 | ご | 11 | 79.904 | Br | 35 | 126.90 | _ | 53 | (210) | At | 85 | | | | | | 16 | ۸I۸ | | | | 15.999 | 0 | 8 | 32.06 | S | 91 | 78.96 | Se | 34 | 127.60 | Ţe | 52 | (200) | Po | 84 | | | | | | 15 | ۸۸ | | | | 14.007 | z | 7 | 30.974 | Ъ | 15 | 74.922 | As | 33 | 121.75 | $^{ m Q}$ | 51 | 208.98 | Bi | . 83 | | | | | | 14 | IVA | | | | 12.011 | ၁ | 9 | 28.086 | Si | 4 | 72.61 | ğ | 32 | 118.71 | Sn | 50 | 207.2 | Pb | 82 | | | | | | 13 | HIA | | | | 10.811 | B
• | م | 26.982 | Ψ | 13 | 69.723 | Сa | 31 | 114.82 | II. | 49 | 204.38 | Į | 81 | | | | | | 12 | <u>=</u> B | | | | Atomic mass — | Symbol - | Atomic No. | | | | 65.39 | Zn | 30 | 112.41 | Cq | 48 | 200.59 | $_{ m Hg}$ | 80 | | | - | | | 11 | <u>B</u> | | | | | Syn | Atom | | | | 63.546 | Cn | . 29 | 107.87 | Ag | 47 | 196.97 | γn | 79 | | | | | GROUPS | 10 | | | | | | | | | | | 58.69 | ž | 28 | 106.42 | Pd | 46 | 195.08 | Pt | 78 | (267) | Unn | 110 | | | 6 | VIIIB | | | | | | | ENTS | | 58.933 | ည | 27 | 102.91 | Rh | 45 | 192.22 | Ir | 77 | (392) | Une | 601 | | | | ∞ | | | | | | | | | N ELEM | | 55.847 | Fe | 56 | 101:07 | Ru | 44 | 190.2 | Os | 9/ | (265) | Uno | 108 | | | 7 | VIIB | | | | | | | | TRANSITION ELEMENTS | | 54.938 | Mn | 25 | 98.907 | Ţc | 43 | 186.21 | Re | 75 | (262) | Uns | 107 | | | 9 | VIB | | | | | | | | | TRAI | 51.996 | Ç | 24 | 95.94 | Mo | 42 | 183.85 | ≩ | 74 | (263) | Unh | 901 | | | 5 | ΛB | | | | | | | | | | 50.942 | > | 23 | 92.906 | SP | 41 | 180.95 | Та | 73 | (262) | Ha | 105 | | | 4 | IVB | | | | | | | | | | 47.88 | Ξ | 22 | 91.224 | Zr | 40 | 178.49 | HŁ | 72 | (261) | Rf | 104 | | | 3 | IIIB | | | | | | | | | | 44.956 | Š | 21 | 88.906 | > | 39 | 138.91 | *La | 57 | (227) | **Ac | 68 | | | 2 | ΙΙΥ | | | | 9.012 | Be | 4 | 24.305 | Mg | 12 | 40.078 | c _z | 20 | 87.62 | Š | 38 | 137.33 | Ba | 99 | 226.03 | Ra | 88 | | | 1 | ≤ | 1.008 | = | _ | 6.941 | Ľ | 3 | 22.990 | Na | = | 39.098 | × | 61 | 85.468 | Rb | 37 | 132.91 | Č | 55 | 223 | Fr | 87 | | | | PERIODS | | | | | 7 | | | 60 | | | 4 | | | v | | | 9 | | | 7 | | | Series | | |--------|--| | de | | | ani | | | ıth | | | Ľ | | | * | | | ** Actinide Series | |--------------------| | **Actin | | Gd Th Dv Ho Er Tm Vh | | 3 64 65 66 67 68 69 70 71 | (247) (247) (251) (252) (253) (258) (259) | Cm Bk Cf Es Fm Md | 96 97 98 99 100 101 102 | number of the isotope with the longest half-life. | |----------------------|----------|---------------------------|---|-------------------|-------------------------|---| | _ | · | | - | Es | 66 | f-life. | | 162.50 | Dy | 99 | (251) | Ct | 86 | gest ha | | 158.93 | Tb | 65 | (247) | Bk | 26 | i the lon | | 157.25 | P.S | 64 | (247) | Cm | 96 | ope with | | 151.96 | Eu | 63 | (243) | Am | 95 | fthe isol | | 150.36 | Sm | 62 | (244) | Pu | 94 | umber o | | (145) | Pm | 19 | 237.05 | Np | 93 | s the mass n | | 144.24 | PN | 09 | 238.03 | Ω | 92 | cates the | | 140.91 | Ce Pr Nd | 59 | 231.04 | Th Pa U | 16 | () indi | | 140.12 | ပိ | 28 | 232.04 | Th | 06 | | # UNIVERSITY OF SWAZILAND #### C111 SECTION A ANSWER SHEET | STU | JDENT | ID | NUMBE | R: | | |-----|--------------|----|-------|----|--| | | | | | | | Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. | 1. | (A) | (B) | (C) | (D) | (E) | |-----|-----|-----|-------|-----|------------| | 2. | (A) | (B) | (C) | (D) | (E) | | 3. | (A) | (B) | (C) | (D) | (E) | | 4. | (A) | (B) | (C) | (D) | (E) | | 5. | (A) | (B) | (C) | (D) | (E) | | 6. | (A) | (B) | (C) | (D) | (E) | | 7. | (A) | (B) | (C) | (D) | (E) | | 8. | (A) | (B) | (C) | (D) | (E) | | 9. | (A) | (B) | (C) | (D) | (E) | | 10. | (A) | (B) | (C) . | (D) | (E) | | 11. | (A) | (B) | (C) | (D) | (E) | | 12. | (A) | (B) | (C) | (D) | (E) | | 13. | (A) | (B) | (C) | (D) | (E) | | 14. | (A) | (B) | (C) | (D) | (E) | | 15. | (A) | (B) | (C) | (D) | (E) | | 16. | (A) | (B) | (C) | (D) | (E) | | 17. | (A) | (B) | (C) | (D) | (E) | | 18. | (A) | (B) | (C) · | (D) | (E) | | 19. | (A) | (B) | (C) | (D) | (E) | | 20. | (A) | (B) | (C) | (D) | (E) | | 21. | (A) | (B) | (C) | (D) | (E) | | 22. | (A) | (B) | (C) | (D) | (E) | | 23. | (A) | (B) | (C) | (D) | (E) | | 24. | (A) | (B) | (C) | (D) | (E) | | | | | | | | # STUDENT ID NUMBER_____ | 25. | (A) | (B) | (C) | (D) | (E) | |-----|-----|-----|-------|-----|------------| | 26. | (A) | (B) | (C) | (D) | (E) | | 27. | (A) | (B) | (C) | (D) | (E) | | 28. | (A) | (B) | (C) | (D) | (E) | | 29. | (A) | (B) | (C) | (D) | (E) | | 30. | (A) | (B) | (C) | (D) | (E) | | 31. | (A) | (B) | (C) | (D) | (E) | | 32. | (A) | (B) | (C) | (D) | (E) | | 33. | (A) | (B) | (C) | (D) | (E) | | 34. | (A) | (B) | (C) | (D) | (E) | | 35. | (A) | (B) | (C) | (D) | (E) | | 36. | (A) | (B) | (C) | (D) | (E) | | 37. | (A) | (B) | (C) | (D) | (E) | | 38. | (A) | (B) | (C) | (D) | (E) | | 39. | (A) | (B) | (C) | (D) | (E) | | 40. | (A) | (B) | (C) · | (D) | (E) | | 41. | (A) | (B) | (C) | (D) | (E) | | 42. | (A) | (B) | (C) | (D) | (E) | | 43. | (A) | (B) | (C) | (D) | (E) | | 44. | (A) | (B) | (C) | (D) | (E) | | 45. | (A) | (B) | (C) | (D) | (E) | | 46. | (A) | (B) | (C) | (D) | (E) | | 47. | (A) | (B) | (C) | (D) | (E) | | 48. | (A) | (B) | (C) · | (D) | (E) | | 49. | (A) | (B) | (C) | (D) | (E) | | 50. | (A) | (B) | (C) | (D) | (E) |