UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2010/11

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 50 marks)
- (ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

_					
1.	The symbol	for the element l	ead is '	•	
	(A) Ld		(C) Sn	(D) Hg	(E) none of these
		()		(-)5	(-)
2.	A combination	on of sand, salt, a	nd water is an e	xample of a	
					(C) compound
	, ,	substance	` ,	geneous mixture	(e) compound
	(D) pure	substatice	(E) sond		
2	W/L:-L4	C41 C-11	411 4		1414-1 10
3.					l correctly matched?
		otassium (B)		(C) Mg, mai	nganese
	(D) Ag, s	silver (E)	Sn, silicon		
4.	Which one of	f the following is	often easily sep	parated into its c	omponents by simple
	techniques si	uch as filtering o	r decanting?		
	(A) heter	ogeneous mixtu	re (B)	compounds	(C) homogeneous mixture
		ents (E)		1	() = 18
	(2) 0.011	(2)	Jointions		
5	Of the follow	ring only	is a chem	ical reaction	
٠.	(A) melti	ing of lead (R) dissolving su	gar in water	(C) tarnishing of silver
	(A) men	ing of icau (E) deserring su	igai ili water	(C) tarmsing of silver
	(D) crusi	ning of stone (E) dropping a pe	emiy into a grass	s of water
,	W7L:-1 C41-	C-11		-C-::C	
о.		following has th	e same number	of significant fig	gures as the number
	1.00310?				
	$(A) 1 \times 10$	0 ⁶ (B) 199.79	1 (C) 8.66	(D) 5.119	(E) 100
7.	Which atom l	has the largest nu	mber of neutror	ns?	
		phorus-30			ootassium-39
	(D) argor		(E) calcium		ottobruii 53
	(D) argor	11-40	(12) carcium	1-40	
_				107.	
8.					protons,
		neutrons, and	elect		
	(A) 197,	79, 118 (B)	118, 79, 39	(C) 79, 197,	197
	(D) 79, 1	18, 118 (E)	79, 118, 79		
				•	
9.	The element	X has three natur	ally occurring is	sotopes. The ma	sses (amu) and %
	abundances of	of the isotopes ar	e given in the ta	ble below. The	average atomic mass of the
	element is		8		
	Isotope	Abundance (%)	Mass (amu)		
	15 _X	28.60	15.33		
	17 _X	13.30	l		
	16 _X	•	17.26		
	10χ	58.10	18.11		
	(A) 17 20) (B) 16.90	(C) 17.65	(D) 17 11	(F) 16 00

10.	Which one of the following is a nonmetal? (A) W (B) Sr (C) Os (D) Ir (E) Br	
11.	An element that appears in the lower left corner of the periodic table is (A) either a metal or metalloid (B) definitely a metal (C) either a metalloid or a non-metal (E) definitely a metalloid (B) definitely a non-metal (C) definitely a metalloid	<u>.</u>
12.	Which compounds do not have the same empirical formula? (A) C_2H_2 , C_6H_6 (B) CO, CO_2 (C) C_2H_4 , C_3H_6 (D) $C_2H_4O_2$, $C_6H_{12}O_6$ (E) $C_2H_5COOCH_3$, CH_3CHO	
13.	Which species has 16 protons? (A) ^{31}P (B) $^{34}S^{2-}$ (C) ^{36}Cl (D) $^{80}Br^{-}$ (E) ^{16}O	
14.	Which of the following compounds would you expect to be ionic? (A) H ₂ O (B) CO ₂ (C) SrCl ₂ (D) SO ₂ (E) H ₂ S	
15.	Which species below is the sulphite ion? (A) SO_2^{-2} (B) SO_3^{-2} (C) S^{2-} (D) SO_4^{-2} (E) HS^{-}	
16.	Which formula/name pair is incorrect ? (A) $Mn(NO_2)_2$ manganese(II) nitrite (B) $Mg(NO_3)_2$ magnesium nitrite (C) $Mn(NO_3)_2$ manganese(IV) nitrate (D) Mg_3N_2 magnesium nitrite (E) $Mg(MnO_4)_2$ magnesium permanganate	
17.	When the following equation is balanced, the coefficients are Al(NO ₃) ₃ + Na ₂ S \rightarrow Al ₂ S ₃ + NaNO ₃ (A) 2, 3, 1, 6 (B) 2, 1, 3, 2 (C) 1, 1, 1, 1 (D) 4, 6, 3, 2 (E) 2, 3, 2, 2	3
18.	There are sulphur atoms in 25 molecules of $C_4H_4S_2$. (A) 1.5×10^{25} (B) 4.8×10^{25} (C) 3.0×10^{25} (D) 50 (E) 6.02×10^{25}	:3
19.	The formula weight of potassium dichromate $(K_2Cr_2O_7)$ is u. (A) 107.09 (B) 255.08 (C) 242.18 (D) 294.18 (E) 333.08	
20.	The mass % of C in methane (CH ₄) is (A) 25.13 (B) 133.6 (C) 74.87 (D) 92.26 (E) 7.743	
21.	There are atoms of oxygen are in 300 molecules of CH_3CO_2H . (A) 300 (B) 600 (C) 3.01×10^{24} (D) 3.61×10^{26} (E) 1.80×10^{26}	
22.	How many moles of sodium carbonate contain 1.773×10^{17} carbon atoms? (A) 5.890×10^{-7} (B) 2.945×10^{-7} (C) 1.473×10^{-7} (D) 8.836×10^{-8} (E) 9.817×10^{-8}) ⁻⁷

23. Lithium and nitrogen react to produce lithium nitride: $6\text{Li (s)} + \text{N}_2 \text{ (g)} \rightarrow 2\text{Li}_3\text{N (s)}$
How many moles of N_2 are needed to react with 0.500 mol of lithium?
(A) 3.00 (B) 0.500 (C) 0.167 (D) 1.50 (E) 0.0833
(A) 3.00 (B) 0.300 (C) 0.107 (D) 1.30 (E) 0.0633
24. Which of the following are weak electrolytes? HCl, HC ₂ H ₃ O ₂ , NH ₃ , KCl
(A) HCl , KCl (B) HCl , HC $_2$ H $_3$ O $_2$, NH $_3$, KCl (C) HC $_2$ H $_3$ O $_2$, KCl
(D) $HC_2H_3O_2$, NH_3 (E) HCl , $HC_2H_3O_2$, KCl
25. The balanced molecular equation for complete neutralization of H ₂ SO ₄ by KOH in aqueous solution is
(A) $2H^+(aq) + 2OH^-(aq) \rightarrow 2H_2O(l)$
(B) $2H^{+}(aq) + 2KOH(aq) \rightarrow 2H_{2}O(1) + 2K^{+}(aq)$
$(C) H_2SO_4(aq) + 2OH^-(aq) \rightarrow 2H_2O(l) + SO_4^{2-}(aq)$
(D) $H_2SO_4(aq) + 2KOH(aq) \rightarrow 2H_2O(1) + K_2SO_4(s)$
$(E) H2SO4(aq) + 2KOH(aq) \rightarrow 2H2O(l) + K2SO4(aq)$
26. When aqueous solutions of are mixed, a precipitate forms.
(A) NiBr ₂ and AgNO ₃ (B) NaI and KBr (C) K ₂ SO ₄ and CrCl ₃
(D) KOH and Ba(NO_3) ₂ (E) Li ₂ CO ₃ and CsI
27. The molarity of a solution prepared by diluting 43.72 mL of 5.005 M aqueous K ₂ Cr ₂ O
to 500. mL isM.
(A) 57.2 (B) 0.0044 (C) 0.438 (D) 0.0879 (E) 0.870
28. The wavelength of light emitted from a traffic light having a frequency of 5.75×10 ¹⁴ Hz is
(A) 702 nm (B) 641 nm (C) 674 nm (D) 521 nm (E) 583 nm
29. The de Broglie wavelength of a 6.0 gram bullet traveling at the speed of sound is The speed of sound is 331 m/sec.
(A) 2.7×10^{-34} m (B) 3.3×10^{-34} m (C) 3.35×10^{-33} m (D) 2.7×10^{-37} m
(E) 6.6×10^{-31} m
30. All of the orbitals in a given electron shell have the same value of the quantum number.
(A) principal (B) azimuthal (C) magnetic (D) spin (E) psi
31. Which of the subshells below do <u>not</u> exist due to the constraints upon the azimuthal quantum number?
(A) 2d (B) 2s (C) 2n (D) all of the above (E) none of the above

32. An electron canno (A) 2, 0, 0	t have the quan	ntum numbers	$n = \underline{}, 1 = \underline{}$	$m_l = $
(A) 2, 0, 0	(B) 2, 1, -1	(C) 3, 1, -1	(D) 3, 2, 3	(E) 3, 2, 1
33. The o	rbital is degene	erate with 5p _v	in a many-elec	tron atom.
(A) 5s		•		
· ,	. / - A		X Y Ay	
34. Which of the follo	-	· ·	_	
		, 0, -1/2	(C) 3, 1, -1, -1	/2 (D) 1, 0, 0, +1/2
(E) $1, 1, 0, +1/2$	2			
35. Which one of the	following is the	e correct electr	on configuration	on for a ground-state
nitrogen atom?				
ls	2s	2p		
1	1 1	1 A		
(A) [1]	\uparrow	<u> </u>		
ls	2s	20		
15	<u> </u>	2p		
\bigcap		$ \Upsilon $		
(B)	1			
ls	2s	2p		
$\uparrow \uparrow$	\uparrow \uparrow	\uparrow \uparrow	and the second s	
(C)			- Leaving Control of the Control of	
1s	2s	2p -		
15				
T 1	$ T\downarrow $ $ T$	`		
(D) ——— (E) None of the	ahove is corre	·c†		
(L) None of the	, above is come			
36. The ground state e	lectron configu	ration of Fe is	S	
				$2) 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
(D) $1s^2 2s^2 2p^6 3$	$s^2 3p^6 4s^2 4d^6$	(E) $1s^2$	$^{2}2s^{2}3s^{2}3p^{10}$	
27 77 1	.	C 44 t		
37. The ground state of $(A) [Ar] 4s^2 3d^3$	onliguration of	r tungsten is _ 6°24f ¹⁴ 5d ⁴	(C) [Nel3s]	(D) [Ye] $6s^24f^7$
(E) [Kr]5s ² 4d ¹⁰	(B) [Ae](05 71 Ju	(C) [146]38	(D) [Ac]os 41
(L) [KL]35 K	JP .			
38. The element that h	nas a valence co	onfiguration of	f 4s¹ is	·
(A) Li (B)	Na (C) K	(D) Rb	(E) Cs	
39. In which set of ele	ments would a	ll members be	expected to ha	ve very similar chemical
properties?				
(A) O, S, Se	(B) N, O, F	(C) Na, Mg,	K (D) S, Se	e, Si (E) Ne, Na, Mg

40.	(B) up a grou (C) down a g (D) up a grou	enerally increa- group and from up and from lef- group and from up and from rig group; the perio	right to left ac to right across left to right ac ht to left acros	ross a period s a period ross a period s a period	
41.	(A) $K^+ < Ca$		(B) $Cl^- < Ar$	$< K^+ < Ca^{2+}$	ncreasing radius? (C) Ca ²⁺ < Ar < K ⁺ < Cl ⁻
42.	(C) Al > Si	elow, which gi > Al > Ar > > S > Cl > > Cl > Al >	Si (B) A Ar (D) C	Ar > Cl > S	> Si > Al
43.	Which ion below	w has the larges	t radius?		
	(A) Cl ⁻	(B) K ⁺	(C) Br ⁻	(D) F ⁻	(E) Na ⁺
44.	in water?	_	-	-	cidic solution when dissolved
	(A) Na ₂ O	(B) CaO	(C) MgO	$(D)CO_2$	(E) SrO
45.	Based on the oc	tet rule, magne	sium most like	ly forms a	ion.
		(B) Mg ²⁻			
46.	Which of the for electron config O Sr	llowing would l guration?	have to lose tw Br	o electrons in	order to achieve a noble gas
47.	What is the elec (A) [Ar]4s ⁰ 3 (E) [Ar]4s ⁶ 30	tron configurat d ⁶ (B) [A	ion for the Fe ² Ar]4s ² 3d ⁴	⁺ ion? (C) [Ar]4s ⁰ ?	3d ⁸ (D) [Ar]4s ² 3d ⁸
48.	The Lewis struc	ture of AsH, sh	iows	nonbondin	g electron pair(s) on As.
					ermined from the data given.
4.0					
49.	For a molecule		-	_	
		d (E) tr		i pianai	(C) linear or T-shaped
50	Of the molecules	s helow only	is r	nonnolar	
20.	(A) CO ₂	(B) H_2O	$\overline{\text{(C) NH}_3}$	(D) HCl	(E) TeCl ₂

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions. In all calculations answers must have the correct number of significant figures.

Question 1 (25 marks)

- (a) Combustion of a 0.9835 g sample of a compound containing only carbon, hydrogen, and oxygen produced 1.900 g of CO₂ and 1.070 g of H₂O. What is the empirical formula of the compound? [9]
- (b) When magnesium metal is burned in air two products are formed. One is magnesium oxide, MgO, and the other magnesium nitride. Magnesium nitride reacts with water to form magnesium oxide and ammonia.
 - (i) Predict the formula of magnesium nitride.
 - (ii) Write a balanced equation for the reaction of magnesium nitride with water.
 - (iii) Magnesium nitride can also be formed by the reaction of magnesium with ammonia. Write a balance equation for this reaction.
 - (iv) If a 6.3 g Mg ribbon reacts with 2.57 g of NH₃(g), which component is the limiting reactant?
 - (v) What mass of $H_2(g)$ is formed in the reaction in (iv)? [10]
- (c) The watt is the derived SI unit of power, the measure of energy per unit time: 1 W = 1 J/s. A semiconductor in a CD player has an output wavelength of 780 nm and a power level of 0.10 mW. How many photons strike the CD surface during the playing of a CD 69 minutes in length? [6]

Question 2 (25 marks)

- (a) Sulfur and oxygen react to produce sulfur trioxide. In a particular experiment, 7.9 grams of SO₃ are produced by the reaction of 5.0 grams of O₂ with 6.0 grams of S. What is the % yield of SO₃ in this experiment? [8]
- (b) The reaction of indium, In, with sulphur leads to three binary compounds, which we will assume to be purely ionic. The three compounds have the following properties:

compound	Mass % In	m.pt (°C)
A	87.7	653
В	78.2	692
C	70.5	1050

- (i) Determine the empirical formulas of compounds A, B and C.
- (ii) What is the oxidation number of In in each of these compounds?

- (iii) Write the electron configuration of the indium ion in each of these compounds.
- (iv) In which compound is the ionic radius of In expected to be smallest. Explain.
- (v) The melting point of ionic compounds often correlates with the lattice energy. Explain the trends in melting points of the compounds A, B, and c in these terms. [17]

Question 3 (25 marks)

(a) Draw the Lewis structure for each of the following molecules or ions and predict their electron domain geometry and their molecular geometry.

(i) SF₄

(ii) XeF₂

(iii) IF₅

[12]

(b) The figure below shows the ball and stick drawings of an AF₃ molecule.

- (i) For each shape, give the electron domain geometry on which the molecular geometry is based.
- (ii) For each shape, how many nonbonding electron domains are there on atom A?
- (iii) Which of the following molecules will lead to an AF₃ molecule with the shape in (ii): Li, B, N, Al, P, Cl?
- (iv) Name an element A that is expected to lead to the structure in (iii). Explain your reasoning.
- (v) Indicate which molecular geometry will give a polar and which give a non-polar molecule. [13]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	•	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
	•	6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h · T	6.626 08 X 10 ⁻³⁴ J s
•	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	;	•
 electron 	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 _X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
.	4πε _ο .	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	-	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{\rm B} = {\rm e}\hbar/2{\rm m}_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_0^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
	· •	

Conversion factors

1 cal 1 eV	=	-	joul <u>e</u> s (. 2 X 10 ⁻¹	. <u> </u>	1 erg 1 eV/n	nolecul	e	=	1 X 10 96 485	o ⁻⁷ J 5 kJ mol	-1
Prefix	xes	f femto 10 ⁻¹⁵	pico	nano	μ micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	Ilc	2	20.180	Ne	10	39.948	Ar	<u>8</u>	83.80	Kr	36	131.29	Xe	54	(222)	Ru	98			
	17	VIIA				18.998	Œ	6	35.453	J	17	79.904	Br	35	126.90	_	53	(210)	At	85			
	16	VIA				15.999	0	8	32.06	S	91	78.96	Se	34	127.60	Ţe	52	(200)	P_0	84			
	15	۸۸				14.007	Z	7	30.974	4	15	74.923	As	33	121.75	Sp	51	208.98	Bi	83			
	14	IVA				12.011	ပ	9	28.086	Si	14	72.61	ge	32	118.71	Sn	50	207.2	Pb	82			
	13	IIIA				10.811	A B	ر •	26.982	ΑI	13	69.723	Сa	31	114.82	- L	49	204.38	I	81			
	12	IIB				Atomic mass - 10.811	Symbol -	Atomic No				65.39	Zn	30	112.41	Cq	48	200.59	Hg	80			
	11	18				Atomi	Syn	Atom				63.546	Cn	29	107.87	Ag	47	196.97	Αn	79			
	10											58.69	ï	28	106.42	Pd	46	195.08	Pt	78	(267)	Unn	110
GROUPS	6	VIIIB								ENTS		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	77	(392)	Une	109
S	∞									V ELEM		55.847	Fe,	56	101.07	Ru	44	190.2	Os	9/	(265)	Uno	108
	7	VIIB								TRANSITION ELEMENTS		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(262)	Uns	107
	9	VIB								TRAN	; ; ;	51.996	ڻ	24	95.94	Mo	42	183.85	×	74	(263)	Unh	901
	5	VB										50.942	>	23	92.906	q _N	41	180.95	Та	73	(262)	На	105
	4	IVB										47.88	Ξ	22	91.224	Zr	40	178.49	HŁ	72	(261)	Rf	104
	3	IIIB										44.956	Sc	21	88.906	X	39	138.91	*La	57	(227)	**Ac	68
	2	¥II				9.012	Be	4	24.305	Mg	12	40.078	ပီ	20	87.62	Sr	38	137.33	Ва	99	226.03	Ra	88
		<u></u>	1.008	=	_	6.941	Ë	e C	22.990	Z Z	=	39.098	×	61	85.468	Rb	37	132.91	C	55	223	Fr	87
		PERIODS		_	•		2	1		647	,		4	•		ν.			9		-	7	

140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Ç	Ce Pr Nd	PN	Pm	Sm	Eu	РS	$^{\rm L}$	Dy	Ho	Er	Tm	ΛP	Lu
28	59	09	19	62	63	64	65	99	29	89	69	70	71
232.04	232.04 231.04 238.03	238.03		(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	Ω		Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No	\mathbf{Lr}
06	16	92		94	95	96	26	86	66	100	101	102	103

*Lanthanide Series

**Actinide Series

() indicates the mass number of the isotope with the longest half-life.