UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION, 2009/2010

TITLE OF PAPER

Special Analytical Techniques

COURSE CODE

C514

TIME ALLOWED

Three (3) Hours.

INSTRUCTIONS

Answer any Four (4) Questions. Each

Question Carries 25 Marks

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a)	As briefly as possible, discuss the	interactions of the following radiations with matter	r
	(i) β-rays	[1	10]
	(ii) γ-rays	[1]	15]
Quest	on 2 (25 marks)		
(a)	The Neutron Activation Analysis,	(NAA), is a popular method of activation analysis.	. For
	this method (i.e NAA):		
(i)	Distinguish between the two	types i.e RNAA and INAA. [2	2]
(ii)	• •	inciples of this method and the general steps usuall	y
	taken when employing this	s method. [5	5]
(iii)	Identify the main sources of n	-	3]
(iv)	Give three advantages and tw	-	_
(v)	Summarize the procedure for	the INAA (instrumentation neutron activation anal	ysis).
		[4	i]
	counts/min for the sample and 3	lowed to cool. Their activities were found to be 3540 counts/min for the standard. If the standard i, calculate the % w/w Ni in the new alloy, using [6]	d was
Questi	on 3 (25 marks)		
(i (ii		e method. [2 a successful application of this method? [3 eps involved when employing the Direct Isotope Di] lution
	Direct Isotope dilution analysis,	·	ds.
` '	Radiorelease method of analysis.)1

(c) On employing the isotope dilution method for the determinations of the concentration of insulin in a sample, a 1.00-mg sample of insulin labelled with ¹⁴C, with an activity of 549 counts/min was added to a 10.00ml sample. After adequately homogenizing the sample, a portion of the insulin was separated and purified, giving 18.30 mg of pure insulin. The measured activity of the isolated insulin was 148 counts/min. Calculate the amount of insulin (in mg), present in the original sample. [7]

QUESTION 5 [25]

- a) (i) Briefly discuss two reasons why an analytical laboratory with AAS intrumentation may want to carry out liquid-liquid extraction prior to analysis. [4]
 - (ii) Use diagrams to describe the liquid-liquid extraction procedure for trace element analysis. [2]
 - (iii) List and discuss any two (2) major disadvantages associated with liquid-liquid extractions in the analytical laboratory. [4]
- b) (i) An analytical laboratory routinely extracts Ni from industrial waste water as the isocyanate prior to AAS analysis using an FIA-AAS system. What does the acronym "FIA-AAS" stand for? [1]
 - (ii) State the difference between "batch extraction" and "continuous extraction" in analytical chemistry. [2]
 - (iii) Draw and label the FIA system used for the Ni extraction. [4]
 - (iv) In the system described in b (iii) above, explain the reason for fragmenting the solvent into a bolus flow. [2]
 - (v) Use drawings to explain how the sample loop injection valve for introducing the waste water sample works. [3]
 - (vi) How is the Ni2+ quantified in an FIA-AAS instrument? [3]

QUESTION 6 [25]

- a) (i) Outline and describe the major steps involved in solid phase extraction (SPE) prior to analysis of Aflatoxin A in peanuts. [2]
 - (ii) Use diagrams to describe the SPE mode "digital chromatography" [2]
- b) (i) Describe the role of "stream splitting" in LC-MS. [2]
 - (ii) Describe the method of electrospray ionization in LC-MS. [2]
 - (ii) Explain how the quadrupole unit acts as a detector in LC-MS. [2]
- c) (i) Give an estimate of the temperatures attainable by ICP, and explain how this makes an ICP a good ion source for mass spectrometry. [2]
 - (ii) Outline the major challenge of interfacing an ICP instrument to a quadrupole mass spectrometer. [2]
 - (iii) Use diagrams to explain how the interface between an ICP and a quadrupole mass spectrometer works. [3]
 - (iv) List and describe two advantages of ICP-MS over ICP-OES. [4]
 - (v) List and describe two interferences in ICP-MS. [4]