UNIVERSITY OF SWAZILAND FIRST SEMESTER EXAMINATION, 2009/2010

TITLE OF PAPER

THERMAL AND ELECTROANALYTICAL

METHODS

COURSE CODE

C513

TIME ALLOWED

Three (3) Hours

INSTRUCTIONS

ANSWER ANY FOUR(4) QUESTIONS.

EACH QUESTION CARRIES 25

MARKS.

A Periodic table and other useful data have been provided with this paper.

SPECIAL REQUIREMENT

GRAPH 'PAPER

DO NOT OPEN THIS QUESTION PAPER UNTL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a) State and briefly explain the various types of available thermogravimetric analysis. Which of these is the most commonly used? [4]

(b)

- (i) What are the basic information obtainable from a typical thermogravimetric analysis? [3]
- (ii) With regard to the sample, what condition is required to obtain a meaningful result, using a TG?
- (iii) Using illustrative diagrams and basic equations differentiate between TG and DTG.

 Summarize the advantages of the later over the former. [7]

(c)

- (i) Give 4 of the sample characteristics capable of influencing its TG analysis. [2]
- (ii) Discuss how the following can negatively affect/influence a T.G analysis.
 - Sample container air buoyancy. [5]
 - Furnace convection currents and turbulence. [3]

Question 2 (25 marks)

- (a) The analytical instrument during the TG analysis of a sample is the thermobalance:
 - i) Draw a labelled schematic diagram of a modern type of this instrument.
 - ii) State the five main components of the instrument.
 - iii) Give six of the features you consider desirable in the design/construction of an ideal thermobalance. [10]
- (b) The design and operation of the thermobalance furnace are critically important in obtaining accurate and reproducible thermograms: Discuss the features that should be entrenched in its design to achieve these goals. [5]
- (c) In order to ascertain whether a given sample was MgO, MgCO₃ or MgC₂O₄. an analyst subjected a 350.0mg of the sample to a thermogravimetric analysis. The thermogram showed a loss of 182.0mg: Given the following relevant possible reactions:

 $MgO \rightarrow No reaction$

 $MgCO_3 \rightarrow MgO + CO_2$

and

 $MgC_2O_4 \rightarrow MgO + CO_2 + CO$

Identify the compound present in the sample?

[10]

Question 3 (25 marks)

(a) Differentiate between TG (thermogravimetric Analysis), and DTA (Differential Thermal Analysis), with respect to:

Their thermograms

Quantity measured

Instrument used

Nature of sample and reference.

[4]

- (b) Explain why atmospheric control is a more critical factor in TG than in DTA analysis.
- (c) Discuss the effects and possible corrections of three of the factors that influence DTA thermograms. [6]
- (d) What factors determine the choice/nature of the following during a DTA experiment.
 - (i) Sample holder?
 - (ii) Temperature measuring device?

[3]

- (e) A compound that consists of Cu(II), ammonia and chloride is subjected to TG analysis. A 50.0mg sample of the compound had a weight loss of 28.2mg. If all the loss is ammonia, what is the formula of the sample? [4]
- (f) The solid lines in the figure (fig. 3.1) below depicts the simultaneous DTA and TGA thermograms of manganese hydrogen carbonate in a porous crucible:
 - (i) Identify the transitions involved at each peak on the DTA trace and the products at each TG plateau.
 - (ii) The dashed line/thermogram was obtained when a controlled atmosphere with 13 atm CO₂ was used. Why is the initial oxide of Mn formed from its carbonate different? [6]

Fig 3.1

Question 4 (25marks)

(a)							
(4)	(i)	Discu	ss the p	rinciple	es invol	lved in Differential Scanning Calorimetry (DSC	C)
	(ii)	Draw	a schei	natic di	aoram (of the setup of the temperature sensors and	[3]
	(11)		s in a I		а6. ш.т	or the setup of the temperature sensors and	[2]
((iii)		quish t mental		DTA a	and DSC with respect to their basic principles a	nd [3]
	Sumar i)					owing in the instrument setup of a DSC ontroller	
i	i)	The d	ifferent	ial tem	perature	e controller	F 03
							[2]
(c)							
	•		-		•	gram (i.e. a DSC curve):	[4]
. 1						btainable from the DSC scan and how rve/scan?	[4]
ii						sts between a DTA and DSC thermogram?	[2]
i	showe 10.0 % i) Th i) Th	d a bas C/min. ne chan	eline sl Calcula ge in th heat ca	nift from ate: ae heat o	n 4.22 t	mg was run on a DSC and the thermogram to 8.80 mCal/sec at a heating rate of y of the sample. that the original heat capacity was	[6]
Questio	on 5 (2	5 mar	ks)	,			
(a)	In usir i)					Γ) and direct injection enthalpimetry (DIE) for a be known prior to their successful application?	malysis:
	ii)					ata are usually obtained from their respective	
		cu	rves/ex	perime	nts.		[6]
(b)]	For th	e adiab	atic cel	l of a T	T set up	p:	
(-)	i)				function		
	ii)		_	pical ex	-		
•	iii)					e evaluated? of the cell enhances its performance and how?	
	iv)						[6]
(c) .	A ther	momet	ric titra	tion wa	is carrie	ed out at 25°C for the reaction.	
		M	+	L	≒	ML	

The following data were obtained:

Time (s)	Heat Evolved (cal.)
5.0	1.95
10.0	3.87
15.0	5.73
20.0	7.42
25.0	8.68
30.0	9.30
35.0	9.56
40.0	9.69
50.0	9.89
60.0	9.97
70.0	10.0
80.0	10.0

Given that the initial sample concentration for both (M) and (L) was 0.01M, and that the titration rate was 0.04 mL/s.

- i) Sketch the appropriate titration curve
- ii) Calculate the equilibrium constant, K and △G
- iii) Identify the equivalence point and calculate the corresponding titrant volume. [13]

(Take Gas Constant, R =
$$1.9872 \text{ cal-K}^{-1}\text{mol}^{-1}$$
)

Question 6 (25 marks)

- (a) Explain the occurrence of a polarographic wave (i.e the oscillation current), in the polarogram when a dropping mercury electrode is used for analysis. [4]
- (b) Discuss the effects of the following factors on the polarogram's shape and hence on the polarographic data:
 - (i) Current maxima.

[4]

(ii) Presence of Oxygen.

What steps are usually taken to minimize their effects?

[4]

(c) Discuss the working principles of differential pulse polarography. Account for its enhanced sensitivity over the conventional (d.c) polarography. [8]

- Ouring the analysis of the oxygen level in water by the polarographic method, the limiting current for the first 2-electron oxygen reduction was $2.11\mu A$. For the capillary used, $m = 2.0 \text{ mgs}^{-1}$ and t = 5.00 s at -0.05 V. Given that the diffussion coefficient, $D = 2.12 \times 10^{-5} \text{cm}^2 \text{s}^{-1}$, calculate the oxygen level in the water in:
 - (i) mM (millimoles/L)

(ii) ppm (i.e. mg/L)

[5]

•		
Quantity	Symbol	Value General data and
Speed of light?	с	2.997 924 58 × 10° m s - 1 fundamental
Elamentary charge	æ	17.602.777 ⁻ X ⁻ 10 ⁻¹⁸ C -constants-
Faraday constant	$F = eN_{\lambda}$	9.6485 × 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 × 10 ⁻²³ J K ⁻¹
Gas constant	$R = kN_A$	8.31451 J K ⁻¹ mol ⁻¹
	•	3.20578×10^{-2} dm ² atm K ⁻¹ mol ⁻¹
		62.364 L Torr K ⁻¹ mal ⁻¹
Planck constant	h	5.626 08 × 10 ⁻³⁴ J s
	$\dot{n} = h/2\pi$	1.054°57 x 10 ⁻²⁴ J s
Avogadro constant	N _A	6.022 14 × 10 ²² mol ⁻¹
Atomic mass unit	u .	1.550 54 x 10 ⁻²⁷ kg
Mass of		9.109 39 × 10 ⁻³¹ kg
electron	m.	1.672-62 × 10 ⁻²⁷ kg
proton	m _o	1.672-62 × 10 × kg
Vacuum permeability:	μ, μ,	$4\pi \times 10^{-7} \text{J s}^2 \text{C}^{-2} \text{m}^{-1}$
permeasury;		$4\pi \times 10^{-7} \text{T}^2 \text{J}^{-1} \text{ m}^3$
permiπίνίτγ Vacuum	$\varepsilon_0 = 1/c^2 \mu_0$.8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πEq	1.112 65 × 10^{-16} J ⁻¹ C ² m ⁻¹
Bohr magneton	μ _s = eή/2m.	9.274 02 × 10 ⁻²⁴ J T ⁻¹
Nuclear magneton	μ _H π/2m,	5.050 79 × 10 ⁻²⁷ J T ⁻¹
Electron g value -	g.	2.002 32
Bohr radius	$a_2 = 4\pi \epsilon_0 h^2/m_e \epsilon$	5.291 77 × 10 ⁻¹¹ m
Rydberg constant	8 . = m,s ⁴ /8h ³ c	1.097 37 × 10 ⁵ cm ⁻¹
Fine structure constant	$c = \mu_0 e^2 c/2h$	7.297 35 × 10 ⁻³
Gravitational constant	G	$6.672.59 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Standard	, g .	. 9,806 65.m.s. ⁻²
acceleration of free fall†		† Exact (defined) values
f p	n µ m	c d k M G Prefixes
	nano micro milli	centi deci kilo mega giga .
•	10-9 10-6 10-3	10 ⁻² 10 ⁻¹ 10 ² 10 ⁶ 10 ⁹
, ,		14 , 14 , 14

-

PERIODIC TABLE OF ELEMENTS

	*	: *L	7		6		5		1	<u> </u>		'n			. 2				PERIODS		
	**Actinide Series	nthanic	F ₁ -	223	ss S	132.91	37	85.468	19	39.098	-	Z	22.990	u	Ξ.	6.941	- =	1.008	5		
	Series	*Lanthanide Series	Ra 88	226.03	Bn 56	137.33	38 Sr	87.62	20	٠40.078	12	24.305 Mg 12		٨	Be	9.012			<u> </u>	2	
		 .	** Ac	(227)	*La 57	138.91	39 Y	88.906	21	44.956								:	=	اد	
() indicates the mass number of the isotope with the longest half-life.	232.04 Th 90	140.12 Ce 58	Rr Rr	(261)	11 12	178.49	2r 40	91.224	22	47.88 T'i									IVI)	4	
	Pa 91	140.91 Pr 59	105	(262)	7 T	180.95	<u>=</u> 2	92.906	23	50.942 V								;	ز ا	5	
	238.03 U 92	144.24 Nd 60	Unh 106	(263)	2 &	183.85	Mo 42	95.94	24	51.996		TRAN		.:					YE C	7	
	237.05 Np 93 *	(145) Pm 61	Uns 107	(262)	75 R.	186.21	Tc 43	98.907	25	54.938 Mm		TRANSITION ELEMENTS							VIII)	7	
	Pu 94	150.36 Sm 62	Uno 108	(265)	0s	190.2	Ru 44	101.07	26	55.847		ELEM							c	^ຂ ີດ	
	(243) Am 95	151.96 Eu 63	Une 109	(266)]7	192.22	81s	16.201	27	58.933		ENTS							S	GROUPS	
	(247) Cm 96	157.25 Gd 64	Uun 110	(267)	Pt 78	195.08	PG	106.42	28	58.69								:	Γ	5	
	(247) Bk 97	158.93 Tb		100	Λu 79	196.97	1 A	107.87	29	63.546				Atom	Svi	Atomic mass -		=	= =		
	(251) Cr 98	162.50 Dy 66			So IIg	200.59	& C₁	112.41	30	65.39 .				Atomic No.	Symbol —	T mace		1		5	
life.	(252) Es 99	164.93 110 67			71 11	204.38	In	114.82	ي د د	69.723	13	ΑI	26.982	ν ₁ (7 ⇒ 3	10.811		11111	1	13	
	(257) Fm 100	167.26 Er 68		4	8 P	207.2	Sn Sn	118.71	32 C	72.61	Z	Si	28.086	φ (U .	1301			V -	-	
	(258) Md 101	168.93 Tm 69		97	2 E	208.98	51 Sb	121.75	ی ک	74.922	ıs	P	30.974	14.007 N 7		7.007		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	٧ <u>١</u>	16	
	(259) No 102	173.04 Yb 70		9.5	Po	(209)	52 T.	127.60	۳ %	78.96	16	S	32.06	œ (0	14 000		¥1/	¥ 10		
	(260) Lr 103	174.97 Lu 71	•	95	% <u>≻</u>	(210)	<u>స</u> –	126.90	35 17	79.904	17	Ω	35.453	9,	10.990 F	10 000		YII.	\$	3	