UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2009/2010

TITLE OF PAPER : Advanced Analytical Chemistry

COURSE CODE : C404

TIME ALLOWED : Three (3) Hours.

INSTRUCTIONS : Answer any Four (4) Questions. Each

Question Carries 25 Marks

A periodic table and other useful data have been provided with this paper.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

- (a) State and briefly discuss the factors that influence the conductivity of an electrolyte.

 From the list of stated factors, pick the one you consider as the most important and state the factors that affect even its own value.

 [5]
- (b) (i) Define the terms 'cell constant' and 'equivalent conductance'
 - (ii) State the S.I. units of the two terms and obtain an expression relating the two

[5]

- (c) Employing the concept of ionic atmosphere, discuss (with an illustrative example), the variation of limiting ionic conductance, λ°+, of cations of elements from the same group in the periodic table.
- (d) A weak monobasic acid, HB, (F.W. 122), weighing 560.75mg was dissolved in 250 mL of dionized water at 25°C. If the measured resistance of the solution is 557Ω at 25°C, and the cell constant of the conductivity cell is 0.075 cm⁻¹, calculate the following for the acid:
 - (i) The molar conductance.
 - (ii) The degree of dissociation.
 - (iii) The ionization constant.

10]

$$(\lambda^0_{\mu^+} = 349.6, Scm^3mol^{-1}, \lambda^0_{R^-} = 40.9Scm^3mol^{-1})$$

Question 2 (25 marks)

- (a) What are the precautionary steps you would take in order to maximize accuracy of data during a conductometric titration? [4]
- (b) Briefly discuss the general procedure for end point determination during a conductometric titration. Why are measurements near the equivalent point unnecessary? [3]
- (c) Using specific examples with illustrative diagrams, explain why the titration of a weak acid with a weak base is preferred to the titration of a weak acid with a strong base.

[4]

- (d) Sketch the general forms of the titration curves for the following conductometric titrations and indicate the equivalent point in each case;
- (i) Titration of HC1 with 0.50 M NaOH.

(e) A solution containing a mixture of an aliphatic acid and an aromatic sulphonic acid was titrated conductometrically with a 0.200 M NH₃ solution (as titrant). The conductance data obtained (after correction for the titrant volume) are as follows:

Burette	0.00	1.00	2.00	2.50	30	3.20	3.50	4.20	4.50	5.00	6.00	8.00
Reading\mL											-	
VS cm ² equiv ⁻¹	2.01	1.75	1.47	1.33	1.19	1.19	1.26	1.47	1.51	1.51	1.52	1.53

- (i) Calculate the number of equivalents of each acid present in the mixture.
- (ii) Comment briefly on the shape of the titration curve.

[10]

Question 3 (25 marks)

(a) What are the salient properties of an ideal reference electrode?

[4]

- (b) For the Ag/AgCl reference electrode:
 - (i) Write the half-cell reaction and its shorthand notation.

[2]

- (ii) Write the Nernst equation for its potential and show that the potential depends on the [KCl], the filling solution. [3]
- (iii) Draw a labeled schematic diagram of this electrode and briefly describe its preparation. [5]
- (iv) Give one advantage and one disadvantage of this electrode when compared with the saturated calomel electrode (SCE). [2]
- (v) Which is more temperature dependent the one prepared using saturated KCl or the one prepared using 3.5M KCl? Explain.
- (c) A cell was prepared by dipping a Pt wire(indicator electrode), and a S.C.E into a solution containing a 0.2M Fe³⁺ and 0.1M Fe²⁺ and the two were connected to a potentiometer so that the Pt-wire is the cathodé while the S.C.E is the anode.

Calculate the theoretical cell voltage, given that:

$$Fe^{3+}$$
 + e^{-} = Fe^{2+} : E^{0} = +0.771V
 E_{ref} = 0.245V(i.e. E_{sce} = 0.245V)
 E_{ij} = 0, and Activity Coefficient = 1.0 [5]

Question 4 (25 marks)

- (a) Give a brief discussion of the make up, the half cell line notation and the half cell reaction of a saturated calomel electrode. [6]
 - (b). The potential (in volts), of some reference electrodes vs SHE, as a function of temperature are as tabulated below:

Temp (°C)	Calomel(0.1MKU)	Ag/AgCI (Saturated KCI)	
10	0.3362	0.2543	0.2138
20	0.3359	0.2479	0.2040
25	0.3356	0.2444	0.1989
30	0.3351	0.2411	0.1939
40 .	0.3336	02340	0.1835

- (i) Which of the electrodes has the poorest potential stability towards temperature variation, and how does this affect its performance as a reference electrode? [4]
- (ii) Arrange the electrodes in the increasing order of their potential—temperature coefficient(or gradient). [2]
- (iii) Which would you choose for an analysis: a saturated calomel electrode or a 0.1M KCI calomel electrode? Explain. [3]
- (c) State the advantages of Ag/AgCl reference electrode over a SCE [2]
- (e) A cell consisting of a SCE (E = 0.25V), and an electrode of unknown potential, has a cell potential of 0.62 V. Calculate the potential of the unknown electrode if the polarity of the SCE is: (i) positive, (ii) Negative [8]

Question 5 (25 marks)

- (a) Classify ion selective electrodes and give an example in each case. [6]
- (b) State three favourable features of ion selective electrodes. [3]

- (c) Generally, H⁺ ions interfere during the use of other types of glass membrane electrodes.

 What steps would you take to avoid serious H⁺ ion interference during the measurement of other cations using a glass membrane electrode? [2]
- (d) (i) With the aid of a diagram, describe the construction, the working mechanism, the electrode response and the major interfering ion of a fluoride ISE. [6]
 - (ii) State the class of the ISE to which it belongs. [1]
 - (iii) Explain why the membrane of this electrode is dopped with Eu(II). [2]
- (e) A lithium ion selective electrode has a selectivity coefficient, K_{Li+, Ca2+} = 5.0 x 10⁻⁵. On being laced in a 3.44 x 10⁻⁴M Li⁺ solution, its potential, versus SCE, was -0.333V.
 Calculate its potential when Ca²⁺ is added to give 0.100 M Ca²⁺.

Question 6 (25 marks)

- (a) Distinguish between
 - (i) Voltammetry and potentiometry,
 - (ii) Voltammetry and coulometry.

[4]

- (b) Offer a brief but appropriate explanation for the following:
 - (i) Highly reproducible current-potential data are usually obtained from polarographic analysis.
 - (ii) H⁺ reduction does not interfere with most reductions at the Hg electrode.
 - (iii) Alkali metals (with lower standard potentials) can be reduced more easily than H⁺ at a DME.
 - (iv) A DME is preferred for cathodic reactions during amperometric titrations while a Pt electrode is preferred for anodic reactions. [10]
- (c) The iodate ion undergoes the following reaction at the DME

$$IO_3^- + 6H^+ + 6e^- = 1^- + 3H_2O$$

When a 1.41mM solution of KIO₃ in a 0.1M perchloric acid was reduced polarographically at a DME with a drop time of 2.18s and Hg flow rate of 2.67mg/s, the diffusion current was 37.1µA.Determine the diffusion coefficient of the iodate ion in 0.1M perchloric acid.

[11]

PERIODIC TABLE OF ELEMENTS

			*	Ţ,			7		c	N		U	n		4	•		Ç.			12		,	-	PERIODS		٠	
			**Actinide Series	*Lanthanide Series			87	223	55	C.	130 01	77	Rh.	85 468	5 >	39.0%	30 000		22.990		٦ <u>۲</u>	:6.941	_	II 800.1	i>	-		
	-		c Scries	le Serie			88	226.03	56	Ba	177.73	2	Sr	87.62	3 <u>{</u>	3 5	40 078	12	24.305	-	30	9.012		• .	AII	2	,	•
,	_						89	(227) ** A	57	*La	138.91	39	≺ :	88.906	21	S 2	250 77								11115	L	3	
		90	232.04	58	140.12		104	(261)	77	Нſ	178.49	6	Zr	91.224	22:	7	47.88								146	4	-	
;	() indi	91	231.04	59	140.91		105	(262)	73	Ta	180.95	<u>-</u>	Z.	92.906	<u>.</u>	V	50.942						٠		VD	50	^	
•	() indicates the mass number of the isotope with the longest half-life.	22 .	238.03	60	144.24 N.d.		106	(263)	74	8	183.85	42	Mo.	95.94	24	宁	51.996	7 7 7 7 7	TIDAN	,	• .			.•	AID	50	,	
•	mass nu	93.	237.05 Nn	61	(145) Pm		107	Uns .	75	Rc	186.21	43	Te	98.907	25	M.	54.938		מדוסע						4110	VIII)	7	
	mber of	94	P ₁₁	62	150.36 Sm		108	Uno	76	02	190.2	44	Ru	101.07	26	Te.	55.847		TO AUGITION OF THE WILLIAM OF							6	»	ឡ
· . · . · . · . · . · . · . · . · . · .	the isoto	95	1. 197		Eu		109	Une		Ħ	192.22	45	Rh	102.91	27	င္ပ	58.933		STS		<i>.</i>			٠.		SIIIN .	9	GROUPS
	pe with	96	Cm (247)	24	157.25 Gd		110	Uun (20%)	8/2	Pf	195.08	8	Pd	106.42	28	Z	58.69			•		 					0	:.
÷ .	the long	97	(247) Bk	65	158.93 Tb			·	//	λu	196.97	47	PA BA	107.87	29	Cn	63.546			•	Atomic No.	Symbol	Atomic mass			₽:	=	· .
:	est half-	98	υ <u>(</u>	99	Dy			 	00	HE	200.59	â		112.41	30	Zn	65.39				SNO.	bol	mass -			BII	12	
	life	99	. (22)	67	Ho H			• • •		o 1		49	: ::	114.82	11	ດີ	69.723	15	ΔΙ	26.982	V	₩	10.811			XII	IJ	· -
-		100	Fm (2)	89	Er				20	3 5	207.2	'n	5	118.71	32	ဂ္ဂ	72.61	14	Š	28.086	6		12.011			IVA	14	
		101	Md.	69	Tm.					ž 5	208.98	-	200	21./5	ŭ	As	74.922	5	7	30.974	7	Z	14.007		1	٧A	. 15	
		162	No.	70	Yb	2				2.0	(209)		3 5	12/.00	34	S	78.96	6	တ	32,06	8	0	15.999			VIV-	16	
	المرابع 2 أخر من المرابع 2 أخر من المرابع 2 أخر من المرابع	8	L-1	71	L	70 07		u 		85 2	2.5	3	3 ⊦	120.50	3	, <u>, , , , , , , , , , , , , , , , , , </u>	79.904		Ω	35.453	9	Ħ	18.998			VIIA	17	
1. 4 1.1 7 1.1 8	The second se									 86 17	D. (222)	יייי	4 }	V. 2	3, 0	2 %	83.80	2	. ≥	39.948	0	N _c	20.180	2 2	4,003	VIIIA	18	-

		ه پولام در در در آن در در زیروستان از در بیان	
The same of the sa			
The second secon			
luantity	Symbol	Value	General data and
Speed of lights	C	2.997 924 58 × 10 ⁸ m s ⁻¹	fundamental
Hementary	· e	T.602777 X 10 "C	constants_
charge			
Faraday constant	F = eN_	9.6485 × 10° C mol ⁻¹	
2cltzmann	k	- 1.380 66 × 10 ⁻²² J K ⁻¹	
Constant Gas constant	2 ~ KN	8.31451 J K ⁻¹ mol ⁻¹	
Ges constant	H - KITA	8.205 78 × 10 ⁻²	
		dm² atm K⁻¹ me	
	e de la companya de	62.384 L Torr K ⁻¹ mol ⁻¹	
Planck constant	h	6.626.08 × 10 ⁻²⁴ J s	
	n = h/2=	$1.05457\times10^{-34}\mathrm{J}\mathrm{s}$	
Avogadro	N _▲	6.022 14 × 10 ²² mol ⁻¹	
constant Atomic mass		1.560 54 x 10 ⁻¹⁷ kg	
unit	•	1,500 34 × 10 × kg ,	
Mass of			
electron	m_{\bullet} .	9.109 39 × 10 ⁻³¹ kg	
proton		1.572 62 × 10^{-27} kg 1.574 93 × 10^{-27} kg	
Vacuum	m:	$4\pi \times 10^{-7} \text{J s}^2 \text{ C}^{-2} \text{ m}^{-1}$	
permeability	ıμ		
-		4π × 10 ⁻⁷ T ² J ⁻¹ m ³	-
Vacuum permittivity	$\varepsilon_0 = 1/c^2 \mu_0$	8.854 19 × 10 ⁻¹² J ⁻¹ C ² m ⁻¹	
	4.πε ₀	1.112 65 × 10 ⁻¹⁶ J ⁻¹ C ² m ⁻¹	
Sohr magneton	ម <u>៖</u> = efi/2m .	$9.27402 \times 10^{-24} \text{J} \text{T}^{-1}$	
Nuclear magneton	μ _N = efi/2m ₂	5.050 79 × 10 ⁻²⁷ J T ⁻¹	
Electron g value	g.	2.002 32.	
Bonr radius	$e_2 = 4\pi \epsilon_0 h^2/m_e$	1 5.291 77 × 10 ⁻¹¹ m	
Rydberg constant	$R_{\star}=m_{\star}s^{\star}/8h^{3}c$		
Fine structure constant	$c=\mu_0e^2c/2h$	7.297 35 × 10 ⁻³	
Gravitational constant	G	6.672 59 × 10 ⁻¹¹ N m ² kg ⁻¹	
Standard ¹		9.806.65 m s ⁻² .	
acceleration			
of free fail†		• • • • • •	t Exact (defined) values
أتبر ا	n µ m	e dk M	G Prefixes
femto pico	niano micro mill	i centi deci kilo mega	giga
		3 10 ⁻² 10 ⁻¹ 10 ³ 10 ⁶	102

APPENDIX C POTENTIALS OF SELECTED HALF-REACTIONS AT 25 °C

A summary of oxidation/reduction half-reactions arranged in order of decreasing oxidation strength and useful for selecting reagent systems.

		<u> </u>
Half-reaction		E° (V)
F ₂ (g) + 2H + 2e	= 2HF	3.06
$O_3 + 2H^+ + 2e^-$	$= 0_2 + H_2O$	2.07
$S_2O_4^{2-} + 2e^{-\frac{1}{2}}$		2.01
$Ag^{2+} + e^{-}$	= Ag ⁺	2.00
H ₂ O ₂ + 2H ⁺ + 2e ⁻	$= 2H_2O$	1.77
$MnO_4^- + 4H^+ + 3e^-$	$= MnO_2(s) + 2H_2O$	1.70
$Ce(IV) + e^{-}$	= Ce(III) (in 1M HClO ₄	
H,10, + H+ + 2e-	$= 10^{-}_{3} + 3H_{2}O$	1.6
Bi_2O_4 (bismuthate) + $4H^+ + 2e^-$	$= 2BiO^{+} + 2H_{*}O$	1.59
~ ~ ~ · · · · · · · · · · · · · · · · ·	$= \frac{1}{2}Br_2 + 3H_2O$	1.52
$MnO_4^{-} + 8H^+ + 5e^-$	$= Mn^{2+} + 4H_2O$	1.51
PbO2 + 4H+ + 2e-	$= Pb^{2+} + 2H_2O$	1.455
$Cl_1 + 2e^{-\frac{1}{2}}$	= 2Cl ⁻	1.36
Cr ₂ O ₇ ⁻ + 14H + 6c ⁻	= 2Cr ³⁺ + 7H ₂ O	1.33
$MinO_2(s) + 4H^+ + 2e^-$	$= Mn^{2+} + 2H_2O$	1.23
$O_2(g) + 4H^+ + 4e^-$	$= 2H_2O$	1.229
$10_3^- + 6H^+ + 5e^-$	$= \frac{1}{2}I_2 + 3H_2O$	1.20
$Br_2(I) + 2e^-$	= 2Br	1.065
$ICI_{2}^{-} + e^{-}$	$=\frac{1}{2}I_2 + 2CI^-$	1.06
$VO_2^+ + 2H^+ + e^-$	$= VO^{2+} + H_2O$	1.00
$HNO_2 + H^+ + e^-$	$= NO(g) + H_2O$	1.00
$NO_3^- + 3H^+ + 2e^-$	$= HNO_2 + H_2O$	0.94
$2Hg^{2+} + 2e^{-}$	$= Hg_2^{2+}$	0.92
$Cu^{2+} + I^{-} + \epsilon^{-}$	= Cul(s)	0.86
$Ag^+ + e^-$	= Ag	0.799
$Hg_2^{2+} + 2e^-$	= 2Hg	0.79
$Fe^{3+}+e^{-}$	$= Fe^{2+}$	0.771
$O_2(g) + 2H^+ + 2e^-$	$= H_2O_2$	0.682
2HgCl ₂ + 2e ⁻	$= Hg_2Cl_2(s) + 2CI^-$	0.63
$Hg_2SO_4(s) + 2e^-$	$= 2Hg + SO_4^{2-}$	0.615
Sb2O5 + 6H+ + 4e-	$= 2SbO^{+} + 3H_{2}O$	0.581
$H_3AsO_4 + 2H^+ + 2e^-$	$= HAsO_2 + 2H_2O$	0.559
$1_3^- + 2e^-$	= 31".	0.545
$Cu^+ + e^-$	= Cu	0.52
$VO^{2+} + 2H^+ + e^-$	$= V^{3+} + H_2O$	0.337
$Fe(CN)_6^{3-} + e^-$	$= \operatorname{Fe}(\operatorname{CN})_{6}^{4-}$	0.36
$Cu^{2+} + 2e^{-}$	= Cu	0.337
$UO_2^{2+} + 4H^+ + 2\epsilon^-$	$= U^{4+} + 2H_2O$	0.334
·	•	(continued)
		•

APPENDIX C (continued)

		
Half-reaction		E* (V)
$Hg_2CI_2(s) + 2e^-$	$= 2Hg + 2Cl^{-}$	0.2676
$BiO^{+} + 2H^{+} + 3e^{-}$	$= Bi + H_2O$	0.32
$AgCl(s) + e^{-}$	$= Ag + Cl^{-}$	0.2222
$SbO^{+} + 2H^{+} + 3e^{-}$	$= Sb + H_1O$	0.212
CuCl3 + e-	$= Cu + 3Cl^{-}$	0.178
$SO_4^{2-} + 4H^+ + 2e^-$	$= SO_2(a\bar{q}) + 2H_2O$	0.17
Sn*+ + 2e-	$= Sn^{2+}$	0.15
S + 2H+ + 2e-	$= H_2S(g)$	0.14
$TiO^{2+} + 2H^{+} + e^{-}$	$= Ti^{3+} + H_2O$	0.10
$S_4O_6^{2-} + 2e^{-}$	$= 2S_2O_3^2$	80.0
$AgBr(s) + e^{-}$	$= Ag + Br^-$	0.071
2H+ + 2e-	= H ₂ .	0.0000
Pb2+ + 2e-	≖ Pb	-0.126
$\operatorname{Sn}^{2+} + 2e^{-}$	= Sn	-0.136
AgI(s) + e-	= Ag + I⁻	-0.152
$Mo^{3+} + 3e^{-}$		approx0.2
$N_2 + 5H^+ + 4e^-$	$= H_1NNH_3^+$	-0.23
Ni2+ + 2e-	= Ni	-0.246
V3+ + e-	≖ V ²⁺	-0.255
$Co^{2+} + 2e^{-}$	== Co	-0.277
$Ag(CN)_{\bar{z}}^{-} + e^{-}$	$= Ag + 2CN^{-}$	-0.31
$Cd^{2+} + 2e^{-}$	= Cd	0.403
Cr3+ + e-	= Cr ²⁺	0.41
$Fe^{2+} + 2e^{-}$	= Fe	-0.440
$2CO_2 + 2H^+ + 2e^-$	$= H_1C_1O_4$	-0.49
$H_3PO_3 + 2H^+ + 2e^-$	$= HPH_2O_2 + H_2O$	-0.50
U4+ + e-	= U3+	-0.61
$Zn^{2+} + 2e^-$	= Zn	0.763
$Cr^{2+} + 2e^{-}$	= Cr	-0.91
$Mn^{2+} + 2e^{-}$	= Mn	-1.18
Zr4+ +4e-	= Zr	-1.53
$Ti^{3+} + 3e^{-}$	= Ti	1.63
$Al^{3+} + 3e^{-}$	= Al	-1.66
$Th^{4+} + 4e^{-}$	= Th	-1.90
$Mg^{2+} + 2e^{-}$	= Mg	-2.37
$La^{3+} + 3e^{-}$	= La	-2.52
Na+ + e-	= Na	-2.714
$Ca^{2+} + 2e^{-}$	= Ca	-2.87
$Sr^{2+} + 2e^{-}$	= Sr	-2.89
K* + e-	= K	-2.925
Li ⁺ + e ⁻	= Li	3.045