UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2009/10

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE **SIX** QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER **ANY FOUR** QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

(a) The charge of Mg²⁺ is twice that of Na⁺, and from the equation

$$u = \frac{ze}{6\pi\eta a}$$

one might therefore expect $Mg^{2+}(aq)$ to have a much greater mobility than $Na^{+}(aq)$. Actually, these ions have similar mobilities. Explain why? [3]

(b) Derive the Ostwald dilution law for a weak electrolyte (all steps must be clearly shown).

$$\frac{1}{\Lambda_m} = \frac{1}{\Lambda_m^0} + \frac{\Lambda_m c}{K_a (\Lambda_m^0)^2}$$
 Ostwald dilution law [4]

(c) The following data were obtained for a weak electrolyte HA in ethanol at 25°C:

Concentration c/ mol dm ⁻³	1.566 x 10 ⁻⁴	2.600 x 10 ⁻⁴	6.219 x 10 ⁻⁴	10.441 x 10 ⁻⁴
Conductivity κ/ S cm ⁻¹	1.788 x 10 ⁻⁶	2.418 x 10 ⁻⁶	4.009 x 10 ⁻⁶	5.336 x 10 ⁻⁶

- (i) Confirm that these values are in accordance with the Ostwald dilution law.
- (ii) Calculate the dissociation constant for this electrolyte. [8]
- (d) For the perchlorate ion, ClO_4^- , in water at 25 °C, $\lambda_m^0 = 67.2 Scm^2 mol^{-1}$.
 - (i) Calculate the mobility, **u**, of ClO₄ in water
 - (ii) Calculate the drift speed, s, of ClO_4^- in water in a field of 24 V/cm.
 - (iii) Calculate the diffusion coefficient of ClO_4^- in water
 - (iv) Estimate the radius of the hydrated perchlorate ion given that the viscosity of water is 8.91 x 10⁻⁴ kg m⁻¹ s⁻¹. [10]

Question 2(25 marks)

- (a) Define or briefly explain what the following terms mean in kinetics
 - (i) collision cross-section
 - (ii) cage effect
 - (iii) diffusion controlled reaction
 - (iv) activation energy
 - (v) kinetic salt effect

[5]

(b) The diffusion coefficient of I in CCl₄ is estimated to be $4.2 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$ at 25 °C. Given that the radius of I is about 200 pm, calculate the rate constant k_d for $I + I \rightarrow I_2$ in CCl₄ at 25 °C. [5]

- (c) For the gas phase reaction $A + A \rightarrow A_2$, the experimental rate constant has been fitted to the Arrhenius equation with the pre-exponential factor $A = 4.07 \times 10^5 L$ mol⁻¹ s⁻¹ at 300 K and an activation energy of 65.43 kJmol⁻¹. Calculate $\Delta^{\ddagger}S$, $\Delta^{\ddagger}H$, and $\Delta^{\ddagger}G$ for the reaction. [10]
- (d) At 25 °C, k = 1.55 L²mol⁻²min⁻¹ at an ionic strength of 0.0241 for a reaction in which the rate determining step involves the encounter of two singly charged cations. Use the Debye-Huckel limiting law to estimate the rate constant at zero ionic strength. [5]

Question 3(25marks)

(a) Devise a cell in which the following reaction is the cell reaction:

$$H_2(g) + 2AgCl(s) \rightarrow 2HCl(aq) + Ag(s)$$
 [2]

- (b) Write the Nernst equation for the cell in (a) [2]
- (c) The emf for the above cell at 25 °C was 0.3524 V when the molality of HCl was 0.100 mol/kg and the hydrogen pressure was 1 bar. Calculate the activity and mean activity coefficient of the HCl assuming hydrogen is a perfect gas. [6]
- (d) Calculate the per cent error in the mean activity coefficient if the Debye-Huckel limiting law is used to calculate it. [3]
- (e) For the cell: Pt $|Ag(s)| AgCl(s) |HCl(aq)| Hg_2Cl_2(s) |Hg(1)| Pt;$ $\frac{dE}{dT} = 0.338 mV / K \text{ at } 25 \text{ °C and 1 bar.}$
 - (i) Write the cell reaction [2] (ii) Calculate $\Delta_r G^{\theta}$, $\Delta_r H^{\theta}$ and $\Delta_r S^{\theta}$ for the cell reaction [10]

Reduction half reaction	Ee /V
$AgCl(s) + e^{-} \rightarrow Ag(s) + Cl^{-}(aq)$	+0.22
$Hg_2Cl(s) + 2e^- \rightarrow 2 Hg(l) + 2 Cl^-(aq)$	+0.27

Question 4 (25 marks)

- (a) Distinguish between reaction order and molecularity. [5]
- (b) The oxidation of bromide ions by hydrogen peroxide in acidic solution

$$2 Br(aq) + H_2O_2(aq) + 2H^+(aq) \rightarrow Br_2(aq) + 2H_2O(aq)$$

follows the rate law

$$v = k[H_2O_2][H^+][Br^-]$$

- (i) If the concentration of H_2O_2 is increased by a factor of 3, by what factor is the rate of consumption of Br ions increased? [3]
- (ii) If, under certain conditions, the rate of consumption of Br ions is 7.2 x 10^{-3} mol L⁻¹ s⁻¹, what is the rate of consumption of H₂O₂? [2]
- (iii) What is the effect on the rate constant k of increasing the concentration of bromide ions? [2]
- (iv) If by the addition water to the reaction mixture the total volume were doubled, what would be the effect on the rate of change of Br $^{-}$? What would be the effect on the rate constant k? [3]
- (c) The data below apply to the formation of urea from ammonium cyanate according to the reaction

Initially 22.9 g of ammonium cyanate was dissolved in enough water to prepare 1.00 L of solution.

Time /min	0	20.0	50.0	65.0	150
Mass of urea/g	0	7.0	12.1	13.8	17.7

- (i) Show that the reaction follows a second order rate law. [5]
- (ii) Determine the rate constant [2]
- (iii) Determine the mass of ammonium cyanate left after 300 minutes. [3]

Question 5(25 marks)

- (a) Discuss the unique physical and chemical properties of zeolites that make them useful heterogeneous catalysts. [6]
- (b) The data for the adsorption of ammonia on barium fluoride at 273 K are given below:

p/kPa	14.0	37.6	65.6	79.2	82.7	100.7	106.4
V/cm ³	11.1	13.5	14.9	16.0	15.5	17.3	16.5

At 273 K, the vapour pressure of ammonia p* is 429.6 kPa.

(i) Confirm that the data fits the BET isotherm:

$$\frac{V}{V_{mon}} = \frac{cz}{(1-z)(1-(1-c)z)} \text{ with } z = \frac{p}{p^*}$$
 [7]

- (ii) Determine the values of c and V_{mon}. [4]
- (c) A solid in contact with a gas at 12 kPa and 25 °C adsorbs 2.5 mg of the gas and obeys the Langmuir isotherm. The enthalpy change when 1.0 mmol of the adsorbed gas is desorbed is +10.2 kJ mol⁻¹. What is the equilibrium pressure at 40 °C?

Question 6 (25 marks)

- (a) Describe the formation of a hydrogen bond in terms of in terms of molecular orbitals. [7]
- (b) The polarizability of NH₃ is 2.22 x 10⁻³⁰ m³; calculate the dipole moment of the molecule (in addition to the permanent dipole moment) induced by an applied electric field of strength 15.0 kV m⁻¹. [6]
- (c) The relative permittivity of methanol corrected for density variation is given below. Calculate the dipole moment and polarizability volume of the molecule. Take $\rho = 0.791$ g cm⁻³ at 20 °C.

θ/ °C	-80	-50	-20	0	20
ε_r	57	49	42	38	34

Useful equation
$$P_m = \frac{N_A}{3\epsilon_0} \left(\alpha + \frac{\mu^2}{3kT} \right)$$
 where $P_m = \left(\frac{\epsilon_r - 1}{\epsilon + 2} \right) \frac{M}{\rho}$ [12]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e^{-}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathrm{m_e}$	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \varepsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	-	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 j 1.602 2	•	•	1 erg 1 eV/n		e	=======================================	1 X 10 96 48:) ⁻⁷ J 5 kJ mol	F ¹
Prefixes	femto	pico	nano	micro	milli	centi	deci	kilo		giga

PERIODIC TABLE OF ELEMENTS

			3			00			∞			0	- <u>-</u> -		20			<u> </u>		:				
	18	VIIIA	4.003	He	2	20.180	Z	2	39.948	Ÿ	18	83.8	Kr	36	131.29	Xc	54	(222	Rn	98				
	17	VIIA				18.998	Ţ	6	35.453	ፘ	11	79.904	Br	35	126.90	I	53	(210)	At	85				
	16	VIA				15.999	0	∞	32,06	တ	91	78.96	Sc	34	127.60	Te	52	(209)	Po	84				
	15	٧A				14.007	Z	7	30.974	4	13	74.922	As	33	121.75	Sb	51	208.98	Bi	83				
	14	IVA				12.011	ပ	9	28:086	Si		72.61	ğ	32	118.71	Sn	20	207.2	Pb	82				
	13	IIIA				10.811	B A	ح 4	26.982	ΑI	13	69.723	ပ္ပ	31	114.82	In	49	204.38	ΤΙ	81				
	12 (IIB				Atomic mass -1-10.8	pol	. No.		_		62.39	Zu	30	112.41	Cq	48	200.59	Hg	80			-	
	11	IB				Atomic	Symbol	Atomic No.				63.546	ű	29	107.87	Ag	47	196.97	Au	62				
ļ	10											58.69	ź	28	106.42	. Pd .	'46	195.08	Pt	78	(267)	Uun	011	
GROUPS	6	VIIIB	-							ENTS		58.933	ပိ	27	102,91	Rh	45	192.22	Ir	77	(266)	Unc	6υ:	
- 1	ော		-				٠	-		ELEMENTS		55.847	F.C	26	101.07	Ru	44	190.2	Os	9/	(592)	Uno	108	
	7	VIIB								NOLLI		54.938	Mn	25	98.907	Tc	43	186.21	Se.	75	(292)	Uns	107	1
-		VIB								TRANSITION		51.996	Ċ	24	95.94	Mo	42	183.85	⋧	74	(263)	Unh	106	
	5	VB	•							-		50.942	>	23	92.906	ŝ	41	180.95	Га	73	(292)	Ha	105	7
	4	IVB										47.88	Ţ	22	91.224	Zr		178.49	Hf	72	(261)	Rf	·104	
	3	IIB	-									44.956	Sc	21	88.906	X	39	138.91	*La	57	(227)	**Ac	68	
	2	ΥII				9.012	Be	4	24.305	Mg		~	ပ္ပံ	20	87.62	Sr	38	137.33	Ba	56	226.03	Ra	88	
		≰	1.008	H	-	6.941	Ľ	3	22.990	g:	=	39.08	×	61	85:468	2 <u>8</u>	37	132.91	S	55	223	퍝.	. 87	
L		PERIODS					7			ĸ			4			5			9	-		7		

140.12	140.12 140.91 144.24	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ಲ	Pr	Nd .	, Pm	Sm	Eu	PS	Tb	Dv	Ho	Er	Tm	Ϋ́	I,u
28	59	09	19	62	63	64	. 65	, 99	29	- 39	69	22	71
232.04	231.04 238.03	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	n	ďN	Pu	Am	Cm	Bk	Ğ	Es	Fm	Md	°Ž	Lr
06	16	92	93	94	95	96	97	86	66	100	101	102	103

*Lanthanide Series

**Actinide Series