UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2009/10

TITLE OF PAPER: ADVANCED PHYSICAL CHEMISTRY

COURSE NUMBER: C402

TIME:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. ANSWER ANY FOUR QUESTIONS.

A DATA SHEET AND A PERIODIC TABLE ARE ATTACHED

GRAPH PAPER IS PROVIDED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

- (a) Define the mean free path. How does this quantity vary with number density, particle diameter and the mean particle speed? [3]
- (b) Calculate the mean free path of argon ($\sigma = 0.36 \text{ nm}^2$) at 298 K at (i) 0.3 atm and (ii) 5×10^{-6} atm.
- (c) A thermopane window consists of two sheets of glass separated by a volume filled with air (which we will model as N_2 where $K = 0.0240 \text{ J K}^{-1} \text{ m}^{-1} \text{ s}^{-1}$). If the window is 1 m² in area with a separation between glass sheets of 3 cm, what is the loss of energy when:
 - (i) The exterior of the window is at a temperature of 10 °C and the interior of the window is a temperature of 22 °C?
 - (ii) The same temperature differential as in (i) is used, but now the window is filled with Ar ($K = 0.0163 \text{ J K}^{-1} \text{ m}^{-1} \text{ s}^{-1}$) rather than N₂? [6]
- (d) Gas cylinders of CO₂ are sold in terms of weight of CO₂. A cylinder contains 22.7 kg of CO₂. Use Poiseuille's formula $\left(\frac{dV}{dt} = \frac{(P_1^2 P_2^2)\pi r^4}{16l\eta p_0}\right)$ to determine for how long this cylinder can be used in an experiment that requires flowing CO₂ at 293 K ($\eta = 146 \mu P$) through a 1.00 m long tube (diameter 0.75 mm) with input pressure of 1.05 atm and output pressure of 1.00 atm. The flow is measured at the tube output.
- (e) A solid surface with dimensions 3.5 mm x 4.0 cm is exposed to helium gas at 111 Pa and 1500 K. How many collisions do the He atoms make with this surface in 10s? [4]

Question 2(25 marks)

- (a) Bearing in mind distinctions between the mechanism of stepwise and chain polymerization, describe ways in which it is possible to control the molar mass of a polymer by manipulating the kinetic parameters of the polymerization.[6]
- (b) For the reaction 2 HI(g) \rightarrow H₂(g) + I₂(g), the values of the rate constant are 1.2 x 10⁻³ L mol⁻¹ s⁻¹ at 700 K and 3.0 x 10⁻⁵ L mol⁻¹ s⁻¹ at 629 K. Estimate the Arrhenius parameters, E_a and A. [6]
- (c) In an experiment to measure the quantum efficiency of a photochemical reaction, the absorbing substance was exposed to 320 nm radiation from a 87.5 W source for 28.0 minutes. The intensity of the transmitted light was 0.257 that of the incident light. As a result of irradiation 0.324 mol of the absorbing substance decomposed. Determine the quantum efficiency. [6]

- (d) The mechanism of the reaction $H_2(g) + I_2(g) \rightarrow 2 HI(g)$ is
 - (1) $I_2 \rightleftharpoons 2 I$
 - $(2) I + H_2 \rightarrow HI + H$
 - (3) $H + I_2 \rightarrow HI + I$

The rate constants are k_1 and k_{-1} for step (1) and k_2 and k_3 for steps (2) and (3), respectively. Find the rate law using the steady state approximation. [7]

Question 3(25marks)

- (a) Define the ionic strength of a solution. What is the molality of Al₂(SO₄)₃ that has the same ionic strength as 0.500 mol kg⁻¹ Ca(NO₃)₂? [6]
- (b) Devise cells in which the following are the reactions:
 - (i) $H_2(g) + I_2(g) \rightarrow 2HI(aq)$

(ii)
$$\operatorname{Sn}(s) + 2\operatorname{AgCl}(s) \to \operatorname{SnCl}_2(\operatorname{aq}) + 2\operatorname{Ag}(s)$$
 [4]

- (c) Derive an expression for the potential of an electrode for which the half-reaction is the reduction of MnO₄ ions to Mn²⁺ions in acidic solution. [3]
- (d) For the cell Pt|Fe(s)|Fe²⁺(aq)|Fe²⁺(aq),Fe³⁺(aq)|Pt, it was found that $\frac{dE^{\circ}}{dT} = 1.14 \text{ mV at } 25 \text{ °C}.$
 - (i) Write the cell reaction using the smallest whole numbers as the stoichiometric coefficients.
 - (ii) Given that $E^{o}(Fe^{2+},Fe) = -0.44 \text{ V}$ and $E^{o}(Fe^{3+},Fe^{2+}) = +0.771 \text{ V}$, calculate $\Delta_{r}G^{o}$, $\Delta_{r}S^{o}$, $\Delta_{r}H^{o}$ for the cell reaction at 25 °C. [12]

Question 4(25marks)

(a) The gas phase reaction

$$RI + HI \rightarrow RH + I_2$$

is first order in each reactant or second order overall. The observed activation energy is 100 kJ/mol. A calculation using the kinetic molecular theory shows that if the concentration of each reactant is 1.0 M, the rate of the reaction at 300 K is 5.0 x 10¹⁰ mol dm⁻³ s⁻¹ if every collision is effective.

- (i) Calculate the predicted rate constant at 300 K using the collision theory.
- (ii) The observed rate constant at 300 K is 3.0 x 10⁸ dm³ mol⁻¹ s⁻¹. What is the value of the steric factor and what does it mean? [8]
- (b) One of the hazards of nuclear explosions is the generation of ⁹⁰Sr and its subsequent incorporation in bones in place of calcium. This isotope emits β-rays of energy 0.55 MeV and has a half life of 28.1 years. Suppose 1.0 μg was absorbed by a newly born child, how much will remain after (i) 18 years and (ii) 70 years?
- (c) Nitrous oxide decomposes according to the reaction

$$2 N_2 O(g) \rightarrow 2 N_2(g) + O_2(g)$$

The rate of the decomposition is quite small unless a halogen is present as a catalyst. Thus in the presence of Cl_2 , the rate depends both on N_2O and Cl_2 pressure., i.e.

$$-\frac{dP_{N_2O}}{dt} = kP_{N_2O}^a P_{Cl_2}^b$$

The course of the reaction can be followed by measuring the increase in the total pressure at constant temperature. The following data were obtained in a series of experiments at 800 K.

Initial pres	sure /Torr	Initial rate/Torr min ⁻¹
P_{N_2O}	P_{Cl_2}	Increase in total pressure
30	4.0	0.30
15	4.0	0.15
_30	1.0	0.15

(i) From the given data determine the values of a and b in the rate law.

[9]

(ii) Calculate the rate constant at 800 K.

Question 5 (25 marks)

(a) What assumptions did Langmuir make when deriving his isotherm, $\theta = \frac{Kp}{1+Kp}.$

[4]

(b) For N₂ adsorbed on a certain sample of charcoal at -77 °C, the volume of adsorbed N₂ (measured at 0 °C and 1 atm) per gram of charcoal varied with N₂ pressure as given below

P/atm	3.5	10.0	16.7	25.7	33.5	39.2
$V/(cm^3/g)$	101	136	153	162	165	166

- (i) Show that the data fits the Langmuir isotherm.
- (ii) Determine the value of K.
- (iii) Determine the volume of N₂ needed for monolayer coverage. [13]
- (c) For H₂ adsorbed on W powder, the following data were found:

θ	0.005	0.005	0.10	0.10
p/Torr	0.0007	0.03	8	23
t/°C	500	600	500	600

where p is the H₂ pressure in equilibrium with tungsten at fractional coverage θ and temperature t. Calculate $\Delta_{ad}H^{\theta}$ at (i) $\theta = 0.005$ and (ii) $\theta = 0.10$. [8]

Question 6 (25 marks)

- (a) Explain why the polarizability of a molecule decreases at high frequencies.
- (b) Values of the molar polarization, P_m, of gaseous water at 100 kPa were determined and are given below as a function of temperature.

T/K	384.3	420.1	444.7	484.1	522.0
$P_{\rm m}/({\rm cm}^3~{\rm mol}^{-1})$	57.4	53.5	50.1	46.8	43.1

Use this data to calculate the dipole moment of H₂O and its polarizability

volume. (Useful equations:
$$P_m = \frac{4\pi}{3} N_A \alpha' + \frac{N_A \mu^2}{9\epsilon_0 kT}$$
 with $\alpha = 4\pi\epsilon_0 \alpha'$)

- (c) A dilute solution of potassium permanganate in water at 25 °C was placed in a horizontal tube of length 10 cm. At first there was a linear gradation of intensity of the purple solution from the left where the concentration was 0.100 mol L⁻¹ to the right where the concentration was 0.050 mol L⁻¹. What is the magnitude and sign of the thermodynamic force acting on the solute
 - (i) Close to the left face of the tube
 - (ii) Close to the right face of the tube. In each case give the force per mole and per molecule.

[8]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathrm{m_e}$	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	$4\pi\epsilon_{o}$	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{N} = e\hbar/2m_{p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration	•	
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10	1 erg 1 eV/n	nolecul	e	=	1 X 10 96 48:) ⁻⁷ J 5 kJ m ol	-1
Prefixes	femto	p pico 10 ⁻¹²	micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

		7			6			Ŋ			4			u			2			_		PERIODS		
	87	Fr	223	55	Cs	132.91	37	Rb	85.468	19	*	39.098	=	\ Z	22.990	٦	. <u> </u>	6.941	-	=	1.008	5	-	
	88	Ra	226.03	56	Ва	137.33	38	Sr	87.62	20	Ca	40.078	12	Mg	24.305	4	Ве	9.012		•		ΙΙΛ	2	
,	89	**Ac	(227)	57	*La	138.91	39	~	88.906	21	Sc	44.956										IIIB	w	
	104	Rf	(261)	72	Hf	178.49	40	Zr	91.224	22	Ti	47.88										IVB	4	
	105	Ha	(262)	73	Ta	180.95	41	Мb	92.906	23	V	50.942										۷В	5	
	106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Cr	51.996		TRAN								VIB	6	:
	107	Uns	(262)	75	Re	186.21	43	Tc	98.907	25	Μn	54.938		TRANSITION ELEMENTS								VIIB	7	
	108	Uno	(265)	76	Os	190.2	44	Ru	101:07	26	Fe	55.847		ELEM									8	G
	109	Une	(266)	77	Ŧ	192.22	45	Rh	102.91	27	Co	58.933		ENTS								VIIIB	9	GROUPS
	110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	Z:	58.69											10	
				79	Au	196.97	47	Ag	107.87	29	Cu	63.546				Atomic No.	Syn	Atomi				ΙB	11	
				80,	Hg	200.59	48	Cd	112.41	30	Zn	65.39 .				ic No.	ıbol —	Atomic mass —				IIB	12	
				<u>&</u>	=	204.38	49	ľn	114.82	31	G _a	69.723	13	Αl	26.982	5	₩	10.811				Alli	13	
					2	_		Sn				72.61	14	Si	28.086	6	C	12.011				AAI	1.4	
				 83	<u>B:</u>	208.98	51	Sb	121.75	ယ	As	74.922	15	Ą	30.974	7	Z	14.007				٧A	15	
				84	Po	(209)	52	Τe	127.60	34	Se	78.96	16	S	32.06	8	0	15.999				VIA	16	
				8 5	Αt	(210)	53	}	126.90	35,	Br	79.904	17	CI	35.453	9	73	18.998				AIIA	17	
				86	Rn	(222)	54	Xe	131.29	36	ζ.	83.80	18	Ar	39.948	01	Ne Ne	20.180	2	He	4.003	VIIIA	18	

*Lantl

**Acı

														I
	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	_
nthanide Series	င့	Ρr	Z —	Pm	Sm	Eu	ପ୍ର	ď	D _V	Ho	돈 *	Tm	Υb	
	58	59	60	61	62	63	64	65	66	67	68	69	70	
Actinide Series	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	
	Th	Pa	U	r Z	Pu	Am	Cm	Bk	Ω	Es	Fm	Md	Z O	
	90	91	92	93	94	95	96	97	98	99	100	101	102	
												_		

174.97 **Lu** 71

(260) Lr 103

() indicates the mass number of the isotope with the longest half-life.