UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2009/2010

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

- (a) Determine the specified quantity:
 - (i) The metal-metal bond order consistent with the 18-electron rule for $[(\eta^5 C_5H_5)Mo(CO)_2]_2^2$.
 - (ii) The identity of the first row-transition metal in $[(\eta^5-C_5H_5)M(CO)_3]_2$ (assume a single M-M bond), an 18-electron molecule.
 - (iii) The expected charge on [(η⁵-C₅H₅)Fe(CO)₃]² on the basis of the 18-electron rule.
- (b) Explain why $V(CO)_6$ is easily reduced to the monoanion, $[V(CO)_6]^-$ [4]
- (c) Identify the following reactions by type and predict the products:
 - (i) $Re_2(CO)_{10} + Na/Hg \rightarrow$
 - (ii) $Rh(PPh_3)_3Br + Cl_2 \rightarrow$

[4]

- (d) Suggest a sequence of reactions for the preparation of Fe(CO)₃(diphos), given iron metal, CO, diphos (Ph₂P-CH₂-PPh₂), and other reagents of your choice.
 - (ii) Propose a synthesis for HMn(CO)₅, starting with Mn₂(CO)₁₀ as the source of Mn and other reagents of your choice. [10]
- (e) Select the best choice in each of the following, and briefly justify the reason for your selection.
 - (i) Shortest C-O bond: Ni(CO)₄, [Co(CO)₄]⁻, [Fe(CO)₄]²⁻
 - (ii) Highest C-O stretching frequency: Ni(CO)₃(PF₃), Ni(CO)₃(PCl₃), Ni(CO)₃(PMe₃) [4]

QUESTION TWO

(a)	The reaction of chloroform with Co ₂ (CO) ₈ yields a compound of formula
	Co ₃ (CH)(CO) ₉ . NMR and IR data indicate the presence of only terminal CO
	ligands and the presence of a CH group. Propose a structure consistent with the
	spectra and the correlation of cluster valence electron (CVE) count with structure.
	[5]

(b) Give organic fragments isolobal with each of the following:

- (i) $(\eta^5 C_5 H_5)Ni$
- (ii) $(\eta^6-C_6H_6)Cr(CO)_2$
- (iii) [Fe(CO)₂(PPh₃)]

[3]

(c) Use Wade's rules to predict the structures of the following:

- (i) B_5H_8
- (ii) $Os_5(CO)_{16}$
- (ii) $Os_6(CO)_{17}[P(OMe_3)]_3$

[6]

- (d) (i) Give a definition of a metal cluster.
 - (ii) What are the two broad classes of metal carbonyl clusters?
 - (iii) $M_3(CO)_{12}$ clusters (M = Ru and Os) are unreactive. Give three ways by which they can be converted into more reactive derivatives. [9]
- (e) What are the formulas of the metal carbonyls that are isoelectronic with
 - (i) $Co(NO)_3$
 - (ii) $Fe(CO)_2(NO)_2$?

[2]

QUESTION THREE

- (a) Explain with necessary diagrams the bonding in CO to transition metal atoms with emphasis on the σ -donor and π^* -acceptor functions of the ligand. [4]
- (b) The complex [Rh(H)(CO)(PPh₃)₃] can be used in the catalytic synthesis of n-pentanal from an alkene having one less carbon atom.
 - (i) Outline the main steps in the mechanism of this process indicating the reaction type of each step (such as oxidative addition) and identifying the catalytic species. [10]
 - (ii) Increasing the concentration of phosphine in the phosphine-rhodium cycle slows the reaction rate. Explain. [5]
- (c) Using the most appropriate acid-base theory, identify the acids and bases in the following reactions:
 - (i) $SiO_2 + Na_2O = Na_2SiO_3$
 - (ii) $B(OR)_3 + NaH = Na[HB(OR)_3]$
 - (iii) $Cl_3PO + Cl^- = Cl_4PO^-$

[6]

QUESTION FOUR

- (a) (i) Why is it difficult to separate lanthanide ions?
 - A mixture of lanthanide metal ions was prepared containing Ce3+, Eu3+ (ii) and Yb3+. To separate the ions, a portion of the solution of the ions was poured through a sulphonated polysterene ion-exchange resin. The column was then eluted with a dilute solution of H4EDTA adjusted to pH 8 with ammonia.
 - Which ion comes out first? Explain. (1)
 - Suggest another buffer solution that could be used to elute the ions (2) from the column.
- An empty, a half-filled and a completely filled 4f electronic level is often said to (b) confer stability on the oxidation state of a lanthanide ion. Cite examples which bear out this statement.
- (i) Use Hund's rules to derive the ground state term of Nd³⁺. (c)
 - (ii) Hence determine the magnetic moment, µ.

[6]

- What are the main sources of (d)
 - Thorium, (Th) (i)
 - Uranium, (U) (ii)

[4]

- Work out the number of unpaired electrons in the ions (e)
 - Gd³⁺ Tm³⁺ (i)
 - (ii)
 - Lu²⁺ (iii)

[3]

QUESTION FIVE

- (a) Describe the main types of interhalogen compounds giving examples of each.

 [6]
- (b) Predict the products of the following reactions of interhalogens:
 - (i) CIF + S \rightarrow
 - (ii) $ClF_3 + SbF_5 \rightarrow$
 - (iii) IF₅ + CsF \rightarrow
- (c) Given that 1.84 g of IF₃ reacts with 0.93 g of [(CH₃)₄N]F to form a product X:
 - (i) identify \mathbf{X}
 - (ii) Use VSEPR model to predict the shapes of
 - (1) IF₃
 - (2) the cation in X
 - (3) the anion in X

[8]

[3]

- (d) The interhalogen compound, I₂Cl₆ exists as a dimer in the solid state.
 - (i) Write a balanced equation for the preparation of this compound. [2]
 - (ii) I₂Cl₆ undergoes dissociation on warming to room temperature. Write the reaction for the dissociation process. [3]
- (e) Ligand substitution reactions on metal clusters are often found to occur by associative mechanisms, and it is postulated that these occur by initial breaking of an M-M bond, thereby providing an open coordination site for the incoming ligand. If the proposed mechanism is applicable, which would you expect to undergo the fastest exchange with added ¹³CO? Co₄(CO)₁₂ or Ir₄(CO)₁₂? Suggest an explanation. [3]

QUESTION SIX

(a)	inaic	ate with sketches the structures of the following:								
	(i)	LiCH ₃								
	(ii)	$Hg(CH_3)_2$								
	(iii)	$Al(CH_3)_3$	[6]							
(b)	(i)	How is an alkylidenetriphenylphosphorane (Wittig reagent) made	?							
	(ii)	What is it used for?								
(c)	Selec	t the best answer and give the basis for your selection.								
	(i)	Strongest acid: H_2O , H_2S , H_2Se or H_2Te								
	(ii)	Stronger base: NF ₃ or NH ₃	[4]							
(d)		he hard and soft acid base (HSAB) theory to predict which of the to of adducts should be the more stable:	following							
		(i) $[Fe(NMe_3)_6]^{3+}$ or $[Fe(SbMe_3)_6]^{3+}$								
		(ii) Bel ₂ or BeF ₂	[4]							
(e)	(i)	Draw the Lewis diagrams for all the species involved in the react $2HSO_3F = H_2SO_3F^+ + SO_3F^-$	ion							
	(ii)	Discuss this equilibrium								
	()	(1) in terms of the solvent-system definition of acids and base	S.							
		(2) in terms of the Lewis definition of acids and bases.	[7]							
		(2) In terms of the Bernis definition of delas and bases.	[,]							

PERIODIC TABLE OF ELEMENTS

4	<u> </u>	ŧ		7			6			ن ا		,	4		,	w			6		-	4		PERIODS		
**Actinide Series	*Lanthanide Series		0,	3 🔄	223	55	Ç	132.91	37	Rb	85.468	19	*	39.098	11	Na	22.990	3	L	6.941	-	I	1.008	IA	-	
e Series	de Serie	1	g	Ka °°	226.03	56	Ba	137.33	38	Sr	87.62	20	င္က	40.078	12	Mg	24.305	4	Be	9.012				AII	2	
	Ø		97	°n Ac	(227)	57	*La	138,91	39	×	88.906	21	Š	44.956											ယ	
77h 90	58	140.12	194	Z Z	(261)	72	Hf	178.49	40	Zr	91.224	22	⊒!	47.88										IVB	4	
231.04 Pa 91	59	140.91	195	Ha	(262)	73	Ta	180.95	41	S	92,906	23	<	50.942										≨	5	
238.03 U 92	60	144.24	198	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	ċ	51.996	1	TRAN								AII4	6	
N p 93	61	(145)	10,	U ns	(262)	75	Re	186.21	43	Tc	98.907	25	Mn	54.938		TRANSITION ELEMENTS								YIB	7	
Pu 94	62	150.36	100	U no	(265)	76	Og Og	190.2	44	Ru	101.07	26	Fe	55.847		ELEM					٠				∞	GI
Am 95	63	151.96		Une -	(266)	77.	, T	192,22	45	Rh	102.91	27	Ç	58.933		ENTS								VIIIB	9	GROUPS
(247) Cm 96	2 4	157.25	< }	oun -	(267)	78	74	195.08	46	Pd	106.42	28	Z	58.69											10	
Bk 97	65	158.93				79	Au	196.97	47	Ag	107.87	29	Cu	63.546				Atomic No.	Symbol	Atomic mass				B	11	
% Cf	66	162.50				80	Hg	200.59	48	С	112.41	30	Zn	65.39				c No.	bol -	mass -				Œ	12	
E.	67	164.93				81	=	204.38	49	In	114.82	31	Ga	69.723	13	A	26,982	3	¥.	10.811				AIII	13	
Fm	68	167.26				82	Pb	207.2	50	Sn	118.71	32	Ge	72.61	14	S	28.086	0	· C	12.011				IVA	14	
101 101	69	168.93				83	Bi	208.98	51	S	121.75	33	As	74.922	15	70	30.974	,	2	14.007				VA	15	
No 102	70	173.04 V h				84	Po	(209)	32	Te	127.60	34	Se	78.96	16	S	32.06	~	· C	15.999				VIA	16	
103	71	174.97	た			85	At	(210)	33	; -	126.90	35	B _T	79.904	17	Ω	35,453	٠) 	18.998				VIIA	17	
						86	Rn	(222)	24	Xe	131.29	36	Kr	83.80	18	Ar	39.948	5	Ne	20.180	2	He	4.003	VIIIA	8	

() indicates the mass number of the isotope with the longest half-life.

General data and fundamental constants

Quantity	Symb	ol ·		Value							
Speed of light	с			2.997 924 58 X 10 ⁸ m s ⁻¹							
Elementary charge	e			1.602 177 X 10 ⁻¹⁹ C							
Faraday constant	F = N	¹₁e		9.6485 X 10 ⁴ C mol ⁻¹							
Boltzmann constant	\boldsymbol{k}			1.380 66 X 10 ²³ J K ⁻¹							
Gas constant	R = N	$_{A}k$		8.314 51 J K ⁻¹ mol ⁻¹							
							atm K ⁻¹ mol ⁻¹				
				6.236	4 X 10 I	Torr K	ζ ⁻¹ mol ⁻¹				
Planck constant	h			6.626 08 X 10 ⁻³⁴ J s							
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\hbar = h$	2π			57 X 10						
Avogadro constant	N_A				14 X 10		1				
Atomic mass unit	u				54 X 10						
Mass											
electron	m_e			9.109	39 X 10) ⁻³¹ Kg					
proton	m_p			1.672	62 X 10) ⁻²⁷ Kg	•				
neutron	m_n			1.674 93 X 10 ⁻²⁷ Kg							
Vacuum permittivity	$\varepsilon_o = I$	$/c^2\mu_0$		$8.854\ 19\ X\ 10^{-12}\ J^{-1}\ C^2\ m^{-1}$							
,	$4\pi\varepsilon_{o}$, -		1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹							
Vacuum permeability	μ_o			$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$							
t doddin pomiosomy				$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ C}^{-2} \text{ m}^3$							
Magneton 4% A 10 1 3 C III											
Bohr	$\mu_R = \epsilon$	eħ/2m _e		9.274 02 X 10 ⁻²⁴ J T ⁻¹							
nuclear ·	• –	ећ/2m _p		5.050 79 X 10 ⁻²⁷ J T ⁻¹							
g value	g _e	p		2.002 32							
Bohr radius		! πε₀ħ/m	e^2	5.291 77 X 10 ⁻¹¹ m							
Fine-structure constant		$_{o}e^{2}c/2h$		7.297 35 X 10 ⁻³							
Rydberg constant		$m_e e^4/8h$		1.097 37 X 10 ⁷ m ⁻¹							
Standard acceleration	ω		0								
of free fall	g			9.806 65 m s ⁻²							
Gravitational constant	$\overset{\circ}{G}$			6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²							
							C				
Conversion factors											
	4 joules (\mathcal{D}	1 erg			1 X 10 ⁻⁷ J					
1 eV 1.60	2 2 X 10	19 J		molecul	e	96 485 kJ mol ⁻¹					
100		•			•		l kcal mol ⁻¹				
f p n μ	m	c	d	k	M	G	Prefixes				
	o milli	centi	deci	kilo	mega	giga					
10 ⁻¹⁵ 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶	10 ⁻³	10-2	10^{-1}	10^{3}	10^{6}	10^9					

Spectrochemical Series $\Gamma < Br^- < S^{2-} < Cl^- < NO_3^- < F^- < OH^- < EtOH < C_2O_4^{2-} < H_2O < EDTA < (NH_3, py) < H_2O_4 < H_2O_5 < H_2O_5$ en < dipy < NO₂⁻ < CN⁻ < CO