UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2009/10

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

(a) The energy levels of a hydrogenic atom are given by the following equation:

$$E_n = -\frac{R_H h c Z^2}{n^2}$$
, where R_H is the Rydeberg constant, Z the nuclear charge and n = 1, 2, 3, ...

- (i) Calculate the wavelength of a photon emitted when an electron goes from n = 3 to n = 2 in the hydrogenic atom He⁺.
- (ii) What is the wavenumber of the first line in the Lyman series of He⁺? (For Lyman series, $n_2 \rightarrow n_1$, with $n_1 = 1$, and $n_2 = 2, 3, ...$) [3]
- (b) The wavefunction for a 2s orbital of a hydrogen atom is $\psi_{2s} = N(2 r/a_0)e^{-r/2a_0}$.

 Determine the normalization constant N. [6]
- (c) State whether the following transitions are allowed or forbidden in a hydrogen atom. In each case give a reason for your answer.

(i)
$$3d \to 2s$$
 (ii) $3p \to 1s$ [4]

- (d) What is the lowest term symbol for Ti³⁺ if the first two electrons to be lost are the 4s electrons. [5]
- (e) Calculate the magnitude of the orbital angular momentum of a 4d electron in a hydrogenic atom. [3]

Question 2 (25marks)

- (a) Describe the physical origins of linewidths in the absorption and emission spectra of compounds. [9]
- (b) At what speed of approach would a red (660 nm) traffic light appear green (520 nm)? [5]
- (c) Estimate the lifetime of a state that gives rise to a line of width of 100 MHz. [5]
- (d) In the vibration-rotation spectrum (v=0→1) of HF, the rotational constants are slightly different in the v = 0 and v = 1 states; their values are found to be B_{v=0} = 20.6 cm⁻¹ and B_{v=1} =19.8 cm⁻¹. Calculate the percentage increase in bond length on going from v = 0 to v = 1.

$$\frac{\text{Useful data}}{v_{obs}} = v \left(\frac{1}{1 \pm s/c} \right), \qquad \delta E = \frac{\hbar}{\tau}, \qquad \delta \widetilde{v} \approx \frac{5.3}{\tau / ps} cm^{-1}$$

Question 3 (25 marks)

- (a) (i) Given that the energy of a particle of mass m confined in a one dimensional box of length L is $\frac{h^2n^2}{8mL^2}$, write down the expression for the energy if the particle is now in a three-dimensional cubical box of lengths $L_x = L_y = L_z = L$ [3]
 - (ii) How many states have energies in the range 0 to $\frac{13h^2}{8mL^2}$? How many energy levels are in this range? [3]
 - (iii) Suppose the cubical box has the dimensions $L_x = L_y = L_z/2$, what would be the energy when (1) $n_x = 1$, $n_y = 2$, $n_z = 2$ (2) $n_x = 1$, $n_y = 1$, $n_z = 4$ What can we say about these two energy levels? [4]
- (i) Calculate the energy levels of the π-electron network in octatetraene, C₈H₁₀, [CH₂=CH-CH=CH-CH=CH-CH=CH₂], using the particle in a box model. To calculate the box length, assume the molecule is linear and use the value 140 pm for the C-C conjugated bond-length and add an extra bond length at each end of the molecule.
 - (ii) What is the wavelength of light required to induce a transition from the ground state to the first excited state?

[5]

(c) The zero point energy of a particle in a box is not zero. Give a physical reason and a mathematical reason for this observation. [5]

Question 4(25 marks)

- (a) Briefly explain the relationship between the Heisenberg uncertainty principle and the commutation of operators. [5]
- (b) Given that $\hat{A} = \frac{d}{dx}$ and $\hat{B} = x^2$ find the commutator $[\hat{A}, \hat{B}]$. [5]
- (c) A particle is in a state described by the function $\psi(x) = 0.632e^{2ix} + 0.775e^{-2ix}$. What is the probability that the particle will be found with momentum $2\hbar$? [4]
- (d) Consider the function $f(x) = xe^{-x^2/2} \infty \le x \le \infty$ (i) Normalize f(x) [6]
 - (ii) Find the average value of x [5]

Question 5 (25marks)

(a) The force constant of ⁷⁹Br ⁷⁹Br is 240 N m⁻¹ and the atomic mass of ⁷⁹Br is 78.9183 u. Calculate the fundamental vibrational frequency \vec{v} and (i) the zero point energy of ⁷⁹Br₂ [3] (ii) (b) The fundamental line in the infrared spectrum of ¹²C¹⁶O occurs at 2143.0 cm⁻¹, and the first overtone occurs at 4260.0 cm⁻¹. Calculate the fundamental vibrational frequency, \bar{v} , and the anharmonicity constant, χ_e [5] (i) (ii) the exact zero point energy of CO. (c) Given that the fundamental vibrational frequency $\overline{v} = 4138.32 \text{ cm}^{-1}$ and the rotational constant B = 20.956 cm⁻¹ for ¹H¹⁹F, calculate the first three lines in the P and R branches in the vibration-rotational spectrum of HF. (d) How many normal modes of vibration does the molecule BF3 have? Sketch two of its bond stretching modes (non-degenerate) and indicate whether they are infrared active or Question 6 (25marks) (a) Use molecular orbital theory to explain why the binding energy of N₂ is less than that of N_2 whilst that of O_2^+ is greater than that of O_2 . [6] (b) Give the valence bond description of the bonding in ammonia, NH₃. [4] (c) Use molecular orbital theory to assign the following bond lengths and binding energies to the following species .: Species: H₂⁺, H₂, He₂⁺, He₂ Bond lengths (pm): 74, 106, 108, 6000 Binding energy (kJ/mol): << 1, 241, 268, 457 [7] (a) Consider the ions NO and C₂⁺ Draw the molecular orbital energy diagram for each for each species [4] (ii) Write down the electron configuration and give the multiplicity of the ground [4] (iii) Which ion should have the longer bond length? [1]

USEFUL INTEGRALS

$$(1) \qquad \int x^2 e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$$

$$(2) \qquad \int x^3 e^{-x^2} dx = 0$$

(3)
$$\int_0^n x^n e^{-ax} dx = \frac{n!}{a^{n+1}} \quad a > 0, \text{ n positive integer}$$

(4)
$$\int \sin\theta d\theta = -\cos\theta + \cos\tan\theta$$

(5)
$$d\tau = r^2 \sin\theta dr d\theta d\phi$$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	,	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674.93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	$1.112 65 \times 10^{-10} \text{ J}^{-1} \text{ C}^{2} \text{ m}^{-1}$
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{\rm B} = {\rm eh}/2{\rm m_e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o h/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		_	joules (. 2 X 10-1	•	1 erg 1 eV/n		е	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹					
Prefixe	es ·	femto	pico	nano	micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°			

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	He	7	20.180	Z	2	39.948	Ar	18	83.80	X	36	131 29	Xc	24	(222)) 42 2	. 70	00		
	17	VIIA			_	18.998	 F= ₁	6	35.453	ū	17.	79.904	Br	35	126.90	÷	53	(210)	At	95	S		
	16	VIA		,		15.999	0	∞.	32.06	S	9.	78.96	Se	34	127.60	Ţ	52	(209)	Pod	2 2	5		
	15	٧A				14.007	z	7	30,974	d	-15	74.922	As	33	121.75	Si	25	208.98	Bi		3		
	14	IVA				12.011	ပ	۶	28.086	Si	14	72.61	ဗိ	32	118.71	Sn	20	207.2	Pb	2			•
	13	IIIA		,		►10.811	m A	5	26.982	Αl	13	69.723	చ్	31	114.82	In	49	204.38	Ξ				
-	12 [.	113			-	S.	Symbol -	Atomic No.				65.39	Zu	30	112.41	Cg	48	200.59	Hg	80			-
	11	B				Atom	Syn	Afom				63.546	r C	29	107.87	Ag	47	196.97	Αu	79			
	10			•						:		58.69	Z __	28	106.42	Pd .	,46	195.08	Pt	78	(267)	Uun	011
GROUPS	6	VIIIB	-		-		-			ENTS		58.933	ပိ	27	102,91	Rh	45	192.22	Ĭŗ	77	(266)	Unc	60:
	ော		-							ELEMENTS		55.847	Fc	26	101.07	Ru	44	190.2	Os	20	(265)	Uno	108
	7	VIIB							•	TRANSITION		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(292)	Uns	107
	9	VIB		•						TRAN		51.996	Ċ	. 24	95.94	Mo	42	183.85	≽	74	(263)	Unh	106
	2	AD.								-		50.942	> ;	23	92,906	S.	41	180.95	La	73	(292)	Ha	1,05
	4 2	140	-	,	•							47.88	Ξ ;	777	91.224	77	9	178.49	H	72	(261)	Rf	104
,	3	Gill						-,-				44.956	200	17	88.906	× ;	39	138.91	r T	52	(227)	**Ac	68
C	7114	5			0 0 17	700	3 ~		24.505	171g	7	40.078	5 8 	07	87.62	2 2	90	137.33	rg T	26	226.03	Ka	88
-	7	1 008	H	‡	1769	;	7	, , ,	066.27 No	7.7		39.098	4.5	2	85.468	1, E		132.91	ر د رد	3	223	<u>.</u>	187
	PERIODS			₹		- ر	4			.		•	4			ń			9			7	

				-life.	gest hai	the lon	ope with	fthe isot	umber of the isotope with the longest haif-life.	nass n	() indicates the n	() ind	
103	102	101	100	66	86	26	96	95		93	92	16	3
Ľ	Š	Md	Fm	ES.	೮	BK	CE	Am		ď) 	E (7 0
(202)	(457)	(007)	(4)	(4)4)				,		,	11	D,	Ë
(0)(0)	(050)	(258)	(757)	(050)	(150)	(247)	(247)	(243)		237.05	238.03	232.04 231.04 238.0;	232.04
71	70	69	: 89	29	99		64	63	79	0.1	00	6	20
Lu	Yp	Tm	고 고	H0.	Dy	Tp	<u> </u>	n Si	Sm	L'm	- Na	rr Na	ָ נ ע
174.97	173.04	168.93	167.26	164.93',	162.50	158.93	157.25	151.96	150.36	(145)	144.24	140.71	71.0.17
											144.04	170.01	170 13

*Lanthanide Series

**Actinide Series