UNIVERSITY OF SWAZILAND MAIN EXAMINATION 2009/10 : TITLE OF PAPER Introductory Organic Chemistry Company of the second s **COURSE NUMBER** C203 TIME Three Hours **INSTRUCTIONS** Answer any **FOUR** questions. Each question carries 25 marks. You are not supposed to open this paper until permission to do so has been granted by the Chief Invigilator. | QUESTION | 1 | |-----------------|---| | | | - (a) Give the mechanism involved in the synthesis of lactic acid (2-hydroxypropanoic acid) by addition of hydrogen cyanide to acetaldehyde (ethanal) and hydrolysis. Why is the lactic acid produced optically inactive? (9) - (b) Write the Fischer projection formulae for the following compounds: - (i) (R)-2-Hydroxypropanoic acid - (ii) (S)-2-Aminopropanoic acid - (iii) (R)-2,3-Dihydroxypropanal - (iv) (R,R)-2,3-Dihydroxybutanedioic acid - (v) (Z)-Butenedioic acid (10) - (c) Define the following terms and give examples: - (i) enantiomers - (ii) meso compound - (iii) chiral centre (6) ### **QUESTION 2** - (a) What do you understand by the term "Walden inversion"? Show how S_N2 mechanism would lead to Walden inversion. (8) - (b) Using 2-bromobutane to illustrate, write the mechanism of E2. Name the possible products and indicate the major one. (5) - (c) Show how S_N1 mechanism can lead to racemization and inversion of configuration. (7) - (d) Describe a chemical method of resolving a racemic modification into its enantiomers. (5) ### **QUESTION 3** - (a) (i) What is a Grignard reagent? - (ii) Describe how a Grignard reagent is usually produced in the laboratory and write the possible structure of the complex it forms with the solvent used to prepare it. (5) | (b) | Write the mechanism involved in the reaction of ethylmagnesium bromide | with | |-----|--|------| | | ethylacetate to form 3-methylpentan-3-ol. | (8) | | | | | - (c) Write the formula and name of each organic product of the following reactions: - (i) $CH_3CH_2CH_2CH_2Br + KOH \rightarrow ?$ - (ii) $CH_3CH_2OH + H_2SO_4/CrO_3 \rightarrow ?$ - (iii) $CH_3CH=CH_2 + HBr \rightarrow ?$ - (iv) $CH_3COOH + CH_3OH \rightarrow ?$ - (v) $C_6H_5MgBr + H_2O \rightarrow ?$ - (vi) $CH_3CH_2COOH + C_6H_5CH_2OH \rightarrow ?$ - (vii) $CH_3CH_2CH_2CH_2MgBr + CH_3C\equiv CH \rightarrow ?$ - (viii) $CH_3CH_2OH + PBr_3 \rightarrow ?$ (12) ## **QUESTION 4** - (a) Write the mechanisms of the reactions involved and explain why acidcatalysed hydration of 3,3-dimethylbut-1-ene gives 2,3-dimethylbutan-2-ol as a major product while hydration of the same substance in oxymercurationdemercuration gives 3,3-dimethylbutan-2-ol. (10) - (b) Write the structure and name of an example of each of the following: - (i) secondary alcohol (ii) dihydric alcohol (iii) aromatic alcohol (6) - (c) Write an explanation for the following observations: - (i) alcohols have higher boiling points than hydrocarbons of the same molecular mass. - (ii) the solubility of alcohols in water decreases with increase in molecular masses of the alcohols. - (d) Write the mechanism of the reaction of ethanol in the presence of concentrated sulphuric acid to give diethyl ether (ethoxy ethane). (4) (5) # **QUESTION 5** - (a) What do you understand by the term "Aldol condensation"? Give an example and write the mechanism of the reaction. (8) - (b) Describe how the Hinsberg test can be used to demonstrate whether an amine is primary, secondary, or tertiary and write equations of the reactions involved. (7) - (c) In the nitration of benzene with a mixture of concentrated nitric acid and sulphuric acid. - (i) name the electrophile for the reaction and write equations to show how it is generated. - (ii) Write the mechanism of the electrophilic substitution. (5) (d) Give the IUPAC names the following compounds: (5) (i) NH₂ - (ii) NH₂ - (iii) OH NO - (iv) OH - (v) SO₃H # **QUESTION 6** (a) Starting with p-toluenesulphonic acid or methanesulphonic acid and any alcohol and inorganic reagents, write how you would prepare each of the following compounds: - (i) methyl p-toluenesulphonate (ii) isopropyl p-toluenesulphonate, and - (iii) tert.-butylmethane sulphonate (9) - (b) Outline the steps in the following conversions: - (i) o-Toluidine to o-chlorotoluene - (ii) m-Chloroaniline to m-bromochlorobenzene - (iii) o-Nitroaniline to o-Nitrobenzonitrile - (iv) p-Nitroaniline to p-Iodonitrobenzene (10) (c) Write the mechanism of the reaction of thionyl chloride with butanoic acid. (6) | | | 25 O | Md | 287 5 | 254.09 | 261.0g | B K | Cm 247.07 | Am 241.06 | 239.06 | 237.06
D | 238.03 | Pa | 732.04 | Ac 227.03 | | nides | Actinides | |---------|----------------------|------------------|-------------|--------------|-------------------|----------------------|--------------|--------------------|---------------------------|-----------------|-------------|------------|-------------|-------------------------|-------------------|---------------------------------|----------------|----------------| | | | 173.04
173.04 | | 3 M 8 | # H.S. | # 162.50
162.50 | 168.92
97 | 8 157.28
8 25 | 8 E 8 | E SECOR | 146.92 P 3 | z Z Z | 2 2 2 E | 140.12
8 | 138.91
138.91 | | Lanthanides | Lant | | | | | | | | | | | | | t l | | | | | | | | | 7 | | | | - | | | | | - | Une | Uno S | Uns | Unh
T | Ung
B | Ung | 25 7 6 | 228.03 E | 223 T 9 | | 6 | R
E | 20.0 | Po | 28 CD 8 | Pb: | 81
T1
204.37 | 28 H 8 | 78
Au
196.97 | Pt | 1822 | 78
OS | 3 P 3 | 183.85 | 180.9K | 178.48 | 174.97 | 137.34 ED 58 | 132.91
CS | | G G | 131.30
24 | 126.90 | 127.60 | Sb
121.76 | 118.89
T S D | in
114.82 | 12 Ca | A9
107.87 | Pd | 72.91
102.91 | 101.07 | 88 T 4 | Mo
86.94 | 291
92,91 | 91.22 | ≋ ≺ ≉ | 87.82
87.82 | 8.57
5.57 | | 4 | 3. 不 8 | \$ D 8 | 98.8
98. | AS: | 32
Ge
72.68 | 91
Ga
98.72 | | 29
Cu | 28
N :
58.71 | C0
58.93 | 726
F-0 | 54.92
□ | 55 C # | 23
V
60.94 | 22
17
47.80 | 22.
22.
23.
24.
26. | Ca | 8
10
7 € | | <u></u> | 3 Ar | ŽΩ÷ | 32 S 6 | 90.97
P.6 | Si
28.09 | 13
Al
26.88 | 12 | . 11 | 10 | 9 | œ | 7 | o, | 57 | 4 | ω | 74.31
24.31 | 22.96 | | N | 20.0
8 0 | 8 ∏ • | 20 | Z | 12.01
C | 10.81 | | | | | | | | | | | 8 B ♣ | \$ C. | | | ŧΙ, | VII
17 | 16 | 15 | 14 | 13 | | | ğ I - | | | | | | | | 2 11 | | | | 18
18 | | | | | | | | | | | | | | | | | |