UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2009-10

TITLE OF PAPER: INTRODUCTORY PHYSICAL CHEMISTRY

COURSE NUMBER: C202

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

- (a) Under what conditions are ΔU and ΔH for a reaction involving gases and/or liquids or solids identical. [3]
- (b) A sample of liquid methanol weighing 5.27 g was burned in a constant volume bomb calorimeter at 25 °C and 119.5 kJ of heat was evolved.
 - (i) Calculate the enthalpy of combustion of methanol in kJ/mol.
 - (ii) The enthalpies of formation of liquid water and carbon dioxide are -285.8 and -393.5 kJ/mol, respectively. Use these data and the result of (i) above to obtain the enthalpy of formation of liquid methanol. [4]
 - (iii) If the enthalpy of vaporization of methanol is 35.27 kJ/mol, what is the enthalpy of formation of methanol gas? [3]
- (c) Consider the reaction

 $TiO_2(s) + 2 C(graphite) + 2Cl_2(g) \rightarrow 2 CO(g) + TiCl_4(l)$ $\Delta_r H^0(298 K) = -80 \text{ kJ/mol}$

and the following data at 25 °C

Substance	TiO ₂ (s)	Cl ₂ (g)	C(graphite)	CO(g)	TiCl ₄ (l)
$\Delta_{\rm f}H^{\theta}/{\rm kJmol}^{-1}$	-945			-110.5	
$C_{p,m}/JK^{-1}mol^{-1}$	55.06	33.91	8.53	29.12	145.2

(i) Calculate Δ_rH^θ at 135.8 °C

[6]

(ii) Calculate Δ_fH⁰ of TiCl₄(l) at 25 °C.

[4]

Question 2(25 marks)

- (a) Explain the thermodynamic meaning of a system, distinguishing among open, closed and isolated systems. Which one of these systems corresponds to
 - (i) a fish swimming in the sea?
 - (ii) An egg?

[7]

- (b) A sample of a perfect gas is initially at 3.0 atm pressure, 25 °C temperature and a volume of 1.5 dm³. The gas is expanded reversibly and adiabatically until the volume is 5.0 dm³. The heat capacity of the gas is 28.89 J K⁻¹ mol⁻¹ and may be assumed to be independent of temperature.
 - (i) Starting with the first law of thermodynamics show that final temperature of a

perfect gas after a reversible adiabatic expansion is given by $T_f = \left(\frac{V_i}{V_f}\right)^{R/C_V} T_i$.

- (ii) Calculate the final temperature in the above expansion [3]
- (iii) Calculate the final pressure [3]
- (iv) Calculate ΔU and ΔH for the above process. [7]

Question 3 (25 marks)

The above diagram shows a reversible Carnot cycle in the form of a p-V. Sketch the (a) corresponding entropy - temperature, (S-T), clearly labelling all the steps. What is the thermodynamic efficiency of the engine? (b) [3] How much heat is deposited at the lower temperature, 200 K, during the isothermal (c) compression? [3] (d) What is the entropy increase during the isothermal expansion at 1000 K? [2] What is the entropy decrease during the isothermal compression at 200 K? [2] (e) What is the entropy change during the adiabatic expansion B→ C? (f) [2] What is the overall entropy change for the entire cycle? (g) [1] What is the change in the Gibbs function during the process $A \rightarrow B$? (h) [2] If $C_p = 200 \text{ J K}^{-1} \text{ mol}^{-1}$, what is the increase in the Gibbs function in the process $D \rightarrow A$? (i) [3]

Question 4(25 marks)

- (a) Define the terms degree of freedom, component and phase and then derive the phase rule. [12]
- (b) State the number of components, phases and degrees of freedom in the following systems:
 - (i) Liquid water in equilibrium with both ice and its vapour.
 - (ii) A saturated aqueous solution of sodium chloride in a closed vessel. [6]
- (c) Sketch a phase diagram for a mixture of two liquids which are completely mixed in all proportions at low and high but not intermediate temperatures. Deduce what would be observed if a liquid mixture initially at low temperature is slowly heated. [7]

Question 5 (25 marks)

One mole of a gas obeys the equation of state pV = RT + Bp in which B is a constant at constant temperature, p, V, T and R have their usual meaning.

- (a) Use the thermodynamic equation of state, $(\partial U/\partial V)_T = T(\partial p/\partial T)_V p$, to show that the internal energy of the gas is a function of temperature only. [6]
- (b) If the gas is expanded isothermally and reversibly to double its initial volume, derive the expressions for w, ΔU , q, ΔH , ΔS , and ΔG [10]
- (c) If the expansion in (b) is carried out isothermally but irreversibly, which of the properties calculated in (b) would have different values and which would remain unchanged? Explain. [3]
- (d) If the expansion in (b) is carried out adiabatically and reversibly, derive the expression for all the properties mentioned in (b). [6]

Question 6 (25 marks)

Toluene and xylene form an ideal solution. At 25 °C the vapour pressure of pure toluene is 22 Torr and that of pure xylene is 5 Torr.

- (a) Define an ideal solution, briefly explaining its characteristics. [5]
- (b) Sketch a graph, showing how the vapour pressure of a solution of toluene and xylene should vary with composition. Show on the same graph the approximate appearance of the plot of the equilibrium vapour composition. [6]
- (c) Calculate the composition of the vapour in equilibrium with a solution in which the mole fraction of toluene is 0.2. [6]
- (d) If the force of attraction between a toluene and a xylene molecule were less than in an ideal solution i.e. the toluene-xylene pair were less strongly attracted than the toluene-toluene and xylene-xylene pairs, show graphically the changes to be expected in the plot in (b) above. Briefly explain the reasons for these changes. [8]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		$8.205 78 \times 10^{-2} \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathrm{m_e}$	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	$1.112 65 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
34		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton	* (4	
Bohr	$\mu_{\rm B} = {\rm e}\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	$1.097~37~\mathrm{X}~10^7~\mathrm{m}^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	3			1 erg 1 eV/n	nolecul	e	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixes	femto	pico	nano	μ micro 10 ⁻⁶	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°	

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	He	7	20.180	Nc	20	39.948	Ar	18	83.80	Kr	36	131.29	Xc	54	(222)	Rn	. 98			
	17	VIIA	7			18.998 2		6	35.453	ご	17	79.904		35	0		53	(210)		85			
	16	VIA				15.999 1	0	∞.	32.06 3	. 	9.	78.96				Te	52	<u> </u>	Po	84			
	15	٧A				14.007 15	z		30,974 3		-15	74.922 7		33	 	Si		<u>L</u>	Bi	·	-		
		_											_		<u>. </u>			-			1		
	14	IVA	٠			12.011	C	۶	28.086	Si	14	72.61	Ge	32	118.71	Sn	20	207.2		82			
	13	IIIA				10.811	B A	ν Δ	26.982	ΑI	13	69.723	Ga	31	114.82	In	49	204.38	T	<u>~</u>			
	12 (.	IIB .				Atomic mass -15-10.811	- lodi	c No.				65.39	Zu	30	112.41	Cq	48	200.59	Hg	80			-
	11	IB				.Atomic	Symbol	Atomic No.				63.546	Cn	29	107.87	Ag	47	196.97	Αu	. 79			
	10						٠		_			58.69	ž	28	106.42	Pq .	,46	195.08	Pt	78	(267)	Unn	011
GROUPS	6	VITIB	_							SLNE		58.933	ပိ	27	102,91	Z.	45	192.22	Ir	77	(266)	Une	60:
ES ES	ော									ELEMENTS	٠.	55.847	Fc	26	101.07	Ru Fu	44	190.2	S	2/6	(265)	Uno	108
	1 2	VIIB							- '	TRANSITION		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(292)	Uns	107.
	9	VIB		•						TRANS		51.996	Ċ	-24	95.94	Mo	42	183.85	⋧	74	(263)	Unh	106
٠	5	VB	-							-	-	50.942	>	23	92,906	Ź	41	180.95	La	73	(292)	Ha	105
	4	IVB										47.88	Ę	22	91.224	17	9	178.49	Hſ	72	(261)	Rf	.104
	3	IIIB										44.956	Sc	21	88.906	>	39	138.91	* "I"	57	(227)	**Ac	89
	2	YI.				9.012	Be	4	24.305	Mg	12	40.078	ల్ -	20	87.62	ž	38	137.33	Ba	26	226.03	Ra	88
		¥.	2008	Ξ.	_	6.941	ij	.3	22.990	Z.	=		×	61	85.468	Kb	37	132.91	౮	55	223	Ę	1 87
		PERIODS					7		· :	m		· :	4			5.			9			7	

	1
Lanthanide Series	**Actinide Series
*Lanthan	**Actini

			Ţ			7
174.97	Lu	11	(260)	ŗ	103	
173.04	γ	70	(259)	Š	102	
168.93	Tm	69	(258)	Md	.101	
167.26	Er	: 89	(257)	Fm	100	
164.93	. Ho	29	(252)	Es	66	-life.
162.50	Ďγ	99	(251)	Cť	86	longest half-life
158.93	Tb	. 65	(247)	Bk	-26	1 the lon
ĺ		64	ı	Cm	96	sumber of the isotope with the l
151.96	n A	63	(243)	Am	<u>\$</u> 6	f the iso
150.36	Sm	62	(244)	Pu	94	umber o
(145)	, Pm	. 61	237.05	ď	93	ie mass n
144.24	Nd .		238.03	n	92	cates the
140.91 144.24	Pr:	59	232.04 231.04	Pa	91	() indi
140.12	ပီ	58	232.04	ı.	90	