UNIVERSITY OF SWAZILAND

FINAL EXAMINATION

ACADEMIC YEAR 2009/2010

TITLE OF PAPER:

INTRODUCTORY

INORGANIC

CHEMISTRY

COURSE NUMBER:

C201

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question one

a) What is the physical significance of a radial wave function R(r)?

[1 mark]

b) If a wave function of a hydrogen atom is given by

$$\psi = (27-18b + 2b^2)\exp(-b/3)$$

where b=Zr/a₀, give the expression for each of the following:

- i) radial part
- ii) angular part
- iii) radial distribution function.

[4 marks]

- c) For the wavefunction of a 6dx²-y² orbital, sketch the diagram corresponding to
 - i) radial part
 - ii) radial distribution function
 - iii) angular part

[6 marks]

- d) For each of the following species, write the electron configuration and determine the number of unpaired electrons present:
 - i) Re²⁺
 - ii) Nd²⁺

[8 marks]

e) Briefly state the de Broglie hypothesis. Your answer should include the appropriate equation. Briefly explain how the hypothesis has contributed to understanding of the properties of an electron.

[6 marks]

Question Two

- a) Consider the species Ga, Ga⁺ and Ga²⁺.
 - i) For each of the species above, calculate the effective nuclear charge for an electron in the valence shell [12 marks]
 - ii) Based on your calculated effective nuclear charges, which of the species is expected to have the lowest ionization energy? Explain. [2 marks]
- b) Consider the molecule IO₂F₃, where iodine, I, is the central atom.
 - i) Draw at least three non-equivalent Lewis structures of the molecule
 - ii) Use formal charges to determine which one of the structures you have drawn is the most reasonable.
 - iii) Calculate the average I-O bond order.

[11 marks]

Question Three

- a) For each of the following species, determine the molecular geometry and suggest an appropriate hybridization scheme for the central atom:
 - a) F_2O (O is the central atom)
 - b) SF₄
 - c) BrF₅ (Br is the central atom)

[12 marks]

- b) Consider the diatomic molecule SCl. Using <u>valence atomic orbitals and valence</u> <u>electrons only, but excluding 3d orbitals</u>, answer the following questions:
 - Prepare a molecular orbital energy level diagram for the molecule, SCI. [Note that the diagram should not be filled with any electrons at this point].
 - ii) Use the diagram in i) above to give electron configurations for SCI and SCI. The electron configuration for S is [Ne]3s²3p⁴ and that of Cl is [Ne]3s²3p⁵
 - iii) For each of the species (SCl and SCl), determine the number of unpaired electrons and indicate whether the species is paramagnetic or diamagnetic.
 - iv) For each of the species, calculate the bond order, and indicate which one is expected to have a stronger bond and which one is expected to have a shorter bond

[13 marks]

Question Four

- a) With the help of appropriate structures, suggest the nature of hydrogen bonding present in the following species:
 - i) Ethanol, CH₃CH₂OH
 - ii) $[NH_4][BH_4]$
 - iii) A compound containing H-bonds between RCOOH and RCOO
 - iv) 1,4-benzene dicarboxylic acid:

1,4-benzene dicarboxylic acid

[9 marks]

- Use balanced equations to illustrate what happens when the following species are b) dissolved in water:
 - i) Diborane, B₂H₆
 - $A\ell_4C_3$ ii)
 - iii) Mg_3N_2

[6 marks]

- c) For each of the following, sketch the structure and indicate the coordination number around the Lewis acid:
 - i) $[BF_4]$
- Be²⁺(aq) ii)
- SiF_6^{2} iii)

Na⁺(aq) iv)

[10 marks]

Question Five

- For each of the groups (of the periodic table) given below, state the common a) oxidation state(s) which occur in oxides, and give the formula, M_xO_y, of each of such oxides:
 - i) group 1
- ii) group 2
- iii) group 13 iv) group 14 v) group 15
 - [10 marks]

- b) Give a balanced equation for a reaction that is expected to take place when each of the following chlorides is added to water:
 - i) SiCl₄ ii) PCl₅ iii) S₂Cl₂

[6 marks]

- c) Give one example of an oxide and write a balanced reaction equation to illustrate its property as indicated below.
 - i) An acidic oxide that is soluble in water and show how it reacts with water
 - ii) A basic oxide that is soluble in water and show how it reacts with water
 - iii) An amphoteric oxide and show how it reacts with an acid and a base

[9 marks]

Question Six

- a) Identfy the species A, B, C, D, E, F, G, H, I, J and K:
 - i) $CaC_2 + A$ ____ $Ca(OH)_2 + B$
 - ii) $C + NH_3$ _____ H_3NGaH_3
 - iii) \mathbf{D} + heat $\mathbf{B}_2\mathbf{O}_3 + \mathbf{E}$
 - iv) $Cl_2(aq) + F \longrightarrow G + Br_2(aq)$
 - v) SiCl₄ + CH₃MgCl \longrightarrow H + I
 - vi) $SiO_2 + J \longrightarrow SiF_4 + K$

[11 marks]

b) Give an outline of the Born-Haber cycle for the formation of indium chloride, InCl₃(s).

[6 marks]

c) A sodium chloride structure has 4 formula units per unit cell. A unit cell length of 564 pm for NaCl has been determined by x-ray diffraction studies. Determine the inter-ionic distance for NaCl, and calculate the volume, the mass and the density of the unit cell.

[8 marks]

Slater's Rules:

1) Write the electron configuration for the atom using the following design;

(1s)(2s,2p)(3s,3p) (3d) (4s,4p) (4d) (4f) (5s,5p) etc

- 2) Any electrons to the right of the electron of interest contributes no shielding. (Approximately correct statement.)
- 3) All other electrons in the same group as the electron of interest shield to an extent of 0.35 nuclear charge units
- 4) If the electron of interest is an s or p electron: All electrons with one less value of the principal quantum number shield to an extent of 0.85 units of nuclear charge. All electrons with two less values of the principal quantum number shield to an extent of 1.00 units.
- 5) If the electron of interest is an d or f electron: All electrons to the left shield to an extent of 1.00 units of nuclear charge.
- 6) Sum the shielding amounts from steps 2 through 5 and subtract from the nuclear charge value to obtain the effective nuclear charge.

Derived SI Units

Physical quantity	Name of unit	Symbol for unit	Definition of unit
Energy	Joule	J	kg m²s-1
Force	Newton	N	kg m s ⁻² = J m ⁻¹
Power	Watt	w	$kg m^2 s^{-3} = J s^{-1}$
Pressure	Pascal	Pa	$kg m^{-1}s^{-2} = N m^{-2}$
Electric charge	Coulomb	C	As
Electric potential difference	Volt	v	$kg m^2 s^{-3} A^{-1} = J A^{-1} s^{-1}, J/C$
Electric resistance	Ohm	Ω	$kg m^2 s^{-3} A^{-2} = V A^{-1}$
Electric capacitance	Farad	F	$A^2s^4kg^{-1}m^{-2} = A s V^{-1}$
Magnetic flux	Weber	₩b	$kg m^2 s^{-2} A^{-1} = V s$
Inductance	Henry	H	$kg m^2 s^{-2} A^{-2} = V s A^{-1}$
Magnetic flux density	Tesla	T	$kg s^{-2}A^{-1} = V s m^{-2}$
Frequency	Hertz	Hz	$Hz = s^{-1}$
Customary temperature,	Degree Celsius	*C	$t[^{\circ}C] = T[K] - 273.15$

Fundamental Constants

Quantity	Symbol	Value	SI unit
Speed of light in vacuum	с	2.997 925 × 10 ^a	m s ⁻¹
Elementary charge	e	$1.602\ 189 \times 10^{-19}$	С
Planck constant	h	$6.626\ 18\times 10^{-34}$	Js
Avogadro constant	N_A	$6.022~04~\times~10^{23}$	mol⁻¹
Atomic mass unit	1u	$1.660\ 566\ \times\ 10^{-27}$	kg
Electron rest mass	$\mathbf{m}_{\mathbf{e}}$	$0.910~953~\times~10^{-30}$	kg
Proton rest mass	m,	$1.672\ 649\ \times\ 10^{-27}$	kg
Neutron rest mass	m,	1.674954×10^{-27}	kg
Faraday constant	F	$9.648\ 46 \times 10^4$	C mol ⁻¹
Rydberg constant	R.	$1.097\ 373\ \times\ 10^7$	m ⁻¹
Bohr radius	$\mathbf{a_o}$	$0.529\ 177\ \times\ 10^{-10}$	m
Electron magnetic moment	μ.	$9.284~83~\times~10^{-24}$	J T⁻¹
Proton magnetic moment	μ,	1.410617×10^{-26}	J T⁻¹
Bohr magneton	μв	$9.274~08\times10^{-24}$	J T-1
Nuclear magneton	μ _N	$5.050~82~\times~10^{-27}$	J T⁻¹
Molar gas constant	R	8.314 41	J mol⁻¹ K
Molar volume of ideal gas (stp.)	V_m	0.022 413 8	m³ mol-1
Boltzmann constant	k	$1.380\ 662\ \times\ 10^{-23}$	J K -1

Conversion Factors

1 cal	= 4.184 joules (J)
1 eV/molecule	$= 96.485 \text{ kJ mol}^{-1}$
	$= 23.061 \text{ kcal mol}^{-1}$
1 kcal mol ⁻¹	$= 349.76 \text{ cm}^{-1}$
	= 0.0433 eV
1 kJ mol ⁻¹	$= 83.54 \text{ cm}^{-1}$
1 wavenumber (cm ⁻¹)	$= 2.8591 \times 10^{-3} \text{ kcal mol}^{-1}$
1 erg	$= 2.390 \times 10^{-11} \text{ kcal}$
1 centimeter (cm)	= 2.390×10^{-11} kcal = 10^8 Å
` ,	$= 10^7 \text{ nm}$
1 picometer (pm)	$= 10^{-2} \text{Å}$
1 nanometer (nm)	= 10 Å

Definit the proces

Older che which is -

which is
1 H
2 He
3 Li
4 Be
5 B
6 C
7 N
8 O
9 F
10 Ne
II Na
12 Mg
13 AI
14 Si
15 P 16 S
17 CI
18 Ar
19 K
20 Ca
21 Sc
22 Ti
23 V
24 Cr

28	_ &	w = 4	.s. ≒ &	- 98	S = 20		_ = 5
2 H 0.4	_						1,7
17	e 7∓8	17 CG 35.453	35 Br 79.904	53 I 126.90			6 X
16	8 O	16 S 32.066	Se 34	52 Te 127.60	84 P0 209.98*		Tm Tm
15	∠ X	15 P 30.974	33 AS 74.922	51 Sb 121.76	83 Bi 208.98		68 Er
4	C 6	14 Si 28.086	32 . Ge 72.61	50 Sn 118.71	82 Pb 207.2		67 H0
. 13	5 B 10.811	13 A1 26.982	31 Ga 69.723	49 In 114.82	81 TI 204.38		% Q §
		12	30 Zn 65.39	Cd Cd	80 Hg 200.59	(294)	2 T
		Ξ	29 Cu 63.546	47 Ag 107.87	79 Au 196.97	111	2 <u>G</u>
		10	28 Ni 58.693	46 Pd 106.42	78 Pt 195.08	110	ය ප ි.
		6	27 C0 58.933	45 Rh 102.91	77 Ir 192.22	109 Mt (266)	Sm Sm
		∞	26 Fe 55.845	44 Ru 101.07	76 Os 190.23	108 Hs . (269)	61 Pm 146 97
		7	25 Min 54.938	43 Tc 98.906*	75 Re 186.21	107 Bh (262)	60 Nd
		9	24 Cr 51.996	42 Mo 95.94	74 W 183.84	. 266 266	59 Pr
		\$	23 V 50.942	41 Nb 92.906	73 T.a 180.95	105 Db (262)	\$8 Ce
	,	4	22 Ti 47.867	40 Zr 91.224	72 r Hf 178.49	104 (261)	★Lanthanide series
		3	21 Sc 44.956	39 Y 88.906	57 La y 138.91	89 Ac 227.03	*Lant Ser
7	4 Be 9.0122	12 Mg 24.305	20 Ca 40.078	38 Sr 87.62	56 Ba 137.33	88 Ra 226.03	. s - 2
1 H 1.0079	3 L.i 6.941	11 Na 22.990	19 K 39.098	37 Rb 85.468	55 C\$ 132.91	87 Fr 223.02	
	2 13 14 15 16	2 13 14 15 16 17 5 6 7 8 9 Be C N O F 9,0122	2 4 Be 9,0122 II I	2 4 Be 9.0122 1.2 Be 9.0122 1.3 Be 9.0122 1.4 Be 9.0122 1.4 Be 9.0123 1.8 Be 9.0122 1.8 Be 9.0123 1.8 Be 1.	24 Be 90122 12 13 14 15 15 16 17 18 19 17 18 17 18 18 18 18 18 18 18 18 18 18 18 18 18	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

*Lauthanide	60 Nd 1 144.24	61 Pm 146.92	62 Sm 150.36	63 Eu 151.96	Gd 157.25	65 Tb 158.93	66 Dy 162.50	67 H0 164.93	68 Er 167.26	69 Tm 168.93	70 Y.b 173.04	71 Lu 174.97
AActinide	92 U 1238.03	93 N p 237.05	94 Pu 239.05	95 Am 241.06	Cm 244.06	97 Bk 249.08	252.08°	99 E.\$ 252.08*	100 Fm 257.10*	101 Md 258.10	102 No 259.10*	103 Lr 262.11

Atomic masses shown here are the 1993 IUPAC values with a maxium of five significant figures (T. B. Coplen et al., Inorg. Chim. Ataa 1994, 217, 217).

An asterisk indicates the mass of a commonly known radioisotope. Numbers in parentheses are the mass numbers of the corresponding longer-lived isotope.

Note: