UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, 2009/2010

TITLE OF PAPER:

INTRODUCTORY CHEMISTRY II

COURSE CODE

C112

TIMEALLOWED ;

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks.

Answer any Four (4) questions. Non-programmable

electronic calculators may be used.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

SECTION A

Question 1 (25 marks)

	influ	Use an appropriate diagram or graph with specific examples, to show the influence of temperature and molecular weight on the distribution of gaseous molecular speeds in a given system. Briefly explain the shapes of the curves.														
(b)	A 35(i)															
	(ii)	a volume of 500.0mL. What volume will $O_{2(g)}$ occupy at STP?	[4] [3]													
©	(i) (ii)	State Dalton's law of partial pressures. At 25°C, 0.200 mole of $CH_{4(g)}$, 0.300 mole of $H_{2(g)}$ and 0.400 mole of are contained in a 10.0L flask. Evaluate the partial pressure (in attach of the components of the gaseous mixture in the flask, and the	a), of													
	(iii)	overall pressure in the flask. Suppose the temperature of the flask in question c(ii) above is raise from 25°C to 75°C, evaluate the ratio of the total pressures in the flask.	ask at													
	(iv)	the two temperatures. Calculate the volume of 0.65 mole of an ideal gas at 365 torr and 97	[3] °C.[3]													
		(Use: R = $0.0821 \text{ L.atm.mol}^{-1}\text{K}^{-1}$)														
Ques	stion 2 ((25 marks)														
(a)		t is the difference between initial rate and instantaneous rate of a react how each of them can be estimated for a reaction. [8]	ction?													
(b)		g a real or hypothetical reaction, show graphically the variation of ini	tial													
	rates	with initial concentrations for a first order reaction. [3]														
©		with initial concentrations for a first order reaction. [3] in that $k = 10^{-7} s^{-1}$ at 1000 °C for the following first order reaction:														
©																
©		n that $k = 10^{-7} s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half – life for this reaction. [3] Calculate the number of days it would take a 2.00g sample of CS_2 to	0													
©	Give	n that $k = 10^{-7} s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half – life for this reaction. Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this														
©	Give	n that $k = 10^{-7}s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half – life for this reaction. Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this														
	(i) (ii) (iii) (iv)	n that $k = 10^{-7} s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half—life for this reaction. [3] Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this length of time? [3]														
Ques	(i) (ii) (iii) (iv)	n that k = 10 ⁻⁷ s ⁻¹ at 1000°C for the following first order reaction: CS ₂ → CS + S Evaluate the half – life for this reaction. Calculate the number of days it would take a 2.00g sample of CS ₂ to decompose and reduce to 0.75g of CS ₂ . [4] Referring to (ii), how many grams of CS would be formed after this length of time? [3] How much of the 2.00g CS ₂ would remain after 45.0 days? [4] (25 marks) the standard enthalpy of formation of a substance, ΔH° _f :														
	(i) (ii) (iii) (iv)	n that $k = 10^{-7}s^{-1}$ at $1000^{\circ}C$ for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half—life for this reaction. [3] Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this length of time? [3] How much of the 2.00g CS_2 would remain after 45.0 days? [4]	5													

(b) Give a statement of Hess' law of heat summation.

[2]

© Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, SiH₄, at 298K:

$$SiH_{4(g)}$$
 + $2O_{2(g)}$ \rightarrow $SiO_{2(g)}$ + $2H_2O_{(1)}$

Substance	SiH _{4(g)}	SiO _{2(g)}	H ₂ O _(l)
ΔH ^o _f (KJ/mol)	+34.0	-910.9	-285.8
			[6]

(d) From the following equations and their corresponding standard enthalpy changes, calculate the ΔH^0_{rxn} , for the following reaction at 298K.

$$C_{(s)} \quad + \qquad 2H_{2(g)} \qquad \rightarrow \qquad CH_{4(g)}$$

Given:

$$C_{(s)}$$
 + $O_{2(g)}$ \rightarrow $CO_{2(g)}$ -393.5 $H_{2(g)}$ + $1/2O_{2(g)}$ \rightarrow $1/2$

(e) Given the following reaction:

$$2Ba_{(s)}$$
 + $O_{2(g)}$ \rightarrow $2BaO_{(s)}$ ΔH° = -1107.0 KJ

How many KJ of heat are released when:

- (i) 5.75g of BaO_(s) is produced?
- (ii) 15.75g of Ba_(s) reacts completely with oxygen to form BaO_(s)? [5]

SECTION B: Structure and Bonding

Question 4 (25 marks)

- (a) Name any five elements in the periodic table which are most commonly associated with the majority of organic compounds. (5 marks)
- (b) Using the principles and rules that govern the distribution of electrons in atomic orbitals, write the ground state electron configuration for each atom named in (a) above. (5 marks)

(c)		is knowledge of electron configuration of an element important is cular structure and properties of carbon compounds?	n the study of (5 marks)
(d)	With	the aid of suitable diagrams and formulas, explain the following ter	rms:
	(i) (ii) (iii)	An Orbital Lewis Structure Chemical Bond	(4 marks) (3 marks) (3 marks)
Ques	tion 5 (25 marks)	
(a)	Brief in ter	olecule (NH ₃)	
	(i) (ii) (iii)	The Lewis Model Valence Shell Electron Pair Repulsion (VSEPR) Theory Orbital Hybridization	(3 marks) (3 marks) (3 marks)
(b)	(i)	Write two resonance structures for the formate ion $HC\overline{O}_2$.	(3 marks)
	(ii)	Explain what these structures predict for:	
		 The carbon-oxygen bond lengths of the formate ion. The electrical charge on the oxygen atoms. 	(2 marks) (2 marks)
(c)		the dot structure, the dash structure and the bond – line formular fiving molecules:	or each of the
	(i) (ii) (iii)	(CH ₃) ₂ CHOH (CH ₃) ₂ CH CH ₂ CH ₂ CH ₂ OH CH ₃ \vec{Q} CH ₃	(3 marks) (3 marks) (3 marks)
Ques	tion 6 (25 marks)	
(a)	and d	an equation for the Lewis acid / Lewis base reaction between borimethyl sulphide [(CH ₃)2S]. Use curved arrows to track the flow how formal charges if present.	
(b)	Write	a bond line formula for each of the following:	(8 marks)
	(i)	(CH ₃) ₂ N CH ₂ CH ₃	
	(ii)	CH₃ CH₂ CH CH₂CH₂CH₂OH	

(iii) CH₂=CH CH₂CH=CHCH₃

- (c) Draw the three-dimensional structures for each of the following molecules. (9 marks)
 - (i) CH₃ Cl
 - (ii) CH₂ Br Cl
 - (iii) CH₄

PERIODIC TABLE OF ELEMENTS

		*	Ţ	*		7			6			UI			4			ယ			2	-	,	-4		PERIODS		
	Wennine peries	Actinid	"Lanthanide Series		87	¥	223	55	Č	132.91	37	Вb	85.468	19	*	39.098	Π	Na	22.990	w	Li	6.941	1	Ħ	1.008	IA		
	e per les	Carias	ie Serie		88	Ra	226.03	56	Ва	137.33	38	Ş	87.62	20	င္က	40.078	12	Mg	24.305	4	Be	9.012				IIA	2	
		_			89	**Ac	(227)	57	*La	138.91	39	×	88.906	21	Sc	44.956										IIIB	ယ	
90	Th	232 04	58 C	140.12	104	Rf	(261)	72	Hf	178.49	45	Zr	91.224	22	ï	47.88										¥.	4	
91	Pa	231 04	59	140.91	105	Ha	(262)	73	Ta	180.95	41	Nb	92.906	23	~	50.942										SH.	5	
92	U	238 03	6	144.24	106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Ç	51.996		TRAN							i	≨ E	6	
93	N _D	20 656	61	(145)	107	Uns	(262)	75	Re	186.21	43	Tc	98.907	25	Mn	54.938		TRANSITION ELEMENTS								YIIR R	7	
94	Pu (244)	(244)	63	150.36	108	Uno	(265)	76	0s	190.2	44	Ru	101.07	26	Fe	55.847		ELEM									∞	g.
95	Am	(743)	63	151.96	109	Une	(266)	77	Ŧ	192.22	45	Rh	102.91	27	င္ပ	58.933		ENTS								VIII R	9	GROUPS
96	Cm	(747)	2 2	157.25	110	Uun .	(267)	78	Pt	195.08	46	Pd	106.42	28	Z	58.69											10	
97	Bk.	(247)	65	158.93				79	Au	196.97	47	A	107.87	29	<u>υ</u>	63.546				Atomic No	Syn	Atomic mass			ŧ	∄ :	=	
98	G	(351)	3.5	162.50				æ,	Hg	200.59	48	Cd	112.41	30	Zn	65.39				ic No.	Symbol -	c mass →			ŧ	∄	12	
99	F. (2)	(353)	67	164.93				81	1	204.38	49	Ħ	114.82	31	ଦ୍ର	69 723	13	2	26.982	5	▼ Β	10.811			11117	VIII	13	
100	Fm (2)	(357)	8 5	167.26				82	Pb	207.2	50	Sn	118.71	32	ଫୁ	72.61	14	Si	28.086	6	C	12.011			1777	AVA	14	
101	Md	(358)	69	168.93				&	₿:	208.98	51	dS.	121.75	ဒ္ဌ	As	74.922	15	Þ	30.974	7	Z	14.007			1	VA	15	
102	No.	(350)	70 20	173.04				æ 42	Po	(209)	52	Te	127.60	34	Se	78.96	16	S	32.06	00	0	15.999			415	VII.V	16	
103	T.r	(360)	71	174.97				85	λ	(210)	53	-	126.90	35	Вr	79.904	17	Ω	35,453	9	দ	18.998			7115	VIIIA	17	
								%	R	(222)	54	Xe	131.29	36	ζ.	83.80	18	Ar	39.948	10	Z	20.180	2	H	4 003	ATITA	18	

() indicates the mass number of the isotope with the longest half-life.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	C	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	,	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = \hbar/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	\mathbf{m}_{e}	9.109 39 X 10 ⁻³¹ Kg
proton "	\mathbf{m}_{p}	1.672 62 X 10 ⁻²⁷ Kg
neutron	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	$1.112 65 \times 10^{-10} J^{-1} C^2 m^{-1}$
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = {\rm e}\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_e e^4/8h^3c\epsilon_o^2$	$1.097\ 37\ \mathrm{X}\ 10^{7}\ \mathrm{m}^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = = 1 eV =	4.184 j 1.602 :	joules (2 X 10		1 erg 1 eV/n	nolecul	е	=======================================	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixes	femto	pico	nano	μ micro 10-6	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°	