UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION, 2009/2010 TITLE OF PAPER: INTRODUCTORY CHEMISTRY II COURSE CODE C112 TIMEALLOWED ; THREE (3) HOURS **INSTRUCTIONS**: There are six questions. Each question is worth 25 marks. Answer any Four (4) questions. Non-programmable electronic calculators may be used. DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR. ## SECTION A ## Question 1 (25 marks) | | influ | Use an appropriate diagram or graph with specific examples, to show the influence of temperature and molecular weight on the distribution of gaseous molecular speeds in a given system. Briefly explain the shapes of the curves. | | | | | | | | | | | | | | | |------------|------------------------------|---|---------------|--|--|--|--|--|--|--|--|--|--|--|--|--| | (b) | A 35(i) | | | | | | | | | | | | | | | | | | (ii) | a volume of 500.0mL. What volume will $O_{2(g)}$ occupy at STP? | [4]
[3] | | | | | | | | | | | | | | | © | (i)
(ii) | State Dalton's law of partial pressures. At 25°C, 0.200 mole of $CH_{4(g)}$, 0.300 mole of $H_{2(g)}$ and 0.400 mole of are contained in a 10.0L flask. Evaluate the partial pressure (in attach of the components of the gaseous mixture in the flask, and the | a), of | | | | | | | | | | | | | | | | (iii) | overall pressure in the flask. Suppose the temperature of the flask in question c(ii) above is raise from 25°C to 75°C, evaluate the ratio of the total pressures in the flask. | ask at | | | | | | | | | | | | | | | | (iv) | the two temperatures. Calculate the volume of 0.65 mole of an ideal gas at 365 torr and 97 | [3]
°C.[3] | | | | | | | | | | | | | | | | | (Use: R = $0.0821 \text{ L.atm.mol}^{-1}\text{K}^{-1}$) | | | | | | | | | | | | | | | | Ques | stion 2 (| (25 marks) | | | | | | | | | | | | | | | | (a) | | t is the difference between initial rate and instantaneous rate of a react how each of them can be estimated for a reaction. [8] | ction? | | | | | | | | | | | | | | | (b) | | g a real or hypothetical reaction, show graphically the variation of ini | tial | | | | | | | | | | | | | | | | rates | with initial concentrations for a first order reaction. [3] | | | | | | | | | | | | | | | | © | | with initial concentrations for a first order reaction. [3]
in that $k = 10^{-7} s^{-1}$ at 1000 °C for the following first order reaction: | | | | | | | | | | | | | | | | © | | | | | | | | | | | | | | | | | | © | | n that $k = 10^{-7} s^{-1}$ at 1000° C for the following first order reaction:
$CS_2 \rightarrow CS + S$
Evaluate the half – life for this reaction. [3]
Calculate the number of days it would take a 2.00g sample of CS_2 to | 0 | | | | | | | | | | | | | | | © | Give | n that $k = 10^{-7} s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half – life for this reaction. Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this | | | | | | | | | | | | | | | | © | Give | n that $k = 10^{-7}s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half – life for this reaction. Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this | | | | | | | | | | | | | | | | | (i)
(ii)
(iii)
(iv) | n that $k = 10^{-7} s^{-1}$ at 1000° C for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half—life for this reaction. [3] Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this length of time? [3] | | | | | | | | | | | | | | | | Ques | (i) (ii) (iii) (iv) | n that k = 10 ⁻⁷ s ⁻¹ at 1000°C for the following first order reaction: CS ₂ → CS + S Evaluate the half – life for this reaction. Calculate the number of days it would take a 2.00g sample of CS ₂ to decompose and reduce to 0.75g of CS ₂ . [4] Referring to (ii), how many grams of CS would be formed after this length of time? [3] How much of the 2.00g CS ₂ would remain after 45.0 days? [4] (25 marks) the standard enthalpy of formation of a substance, ΔH° _f : | | | | | | | | | | | | | | | | | (i)
(ii)
(iii)
(iv) | n that $k = 10^{-7}s^{-1}$ at $1000^{\circ}C$ for the following first order reaction: $CS_2 \rightarrow CS + S$ Evaluate the half—life for this reaction. [3] Calculate the number of days it would take a 2.00g sample of CS_2 to decompose and reduce to 0.75g of CS_2 . [4] Referring to (ii), how many grams of CS would be formed after this length of time? [3] How much of the 2.00g CS_2 would remain after 45.0 days? [4] | 5 | | | | | | | | | | | | | | (b) Give a statement of Hess' law of heat summation. [2] © Given the following standard enthalpy changes of formation, calculate the standard enthalpy change of combustion of silane, SiH₄, at 298K: $$SiH_{4(g)}$$ + $2O_{2(g)}$ \rightarrow $SiO_{2(g)}$ + $2H_2O_{(1)}$ | Substance | SiH _{4(g)} | SiO _{2(g)} | H ₂ O _(l) | |---------------------------------------|---------------------|---------------------|---------------------------------| | ΔH ^o _f (KJ/mol) | +34.0 | -910.9 | -285.8 | | | | | [6] | (d) From the following equations and their corresponding standard enthalpy changes, calculate the ΔH^0_{rxn} , for the following reaction at 298K. $$C_{(s)} \quad + \qquad 2H_{2(g)} \qquad \rightarrow \qquad CH_{4(g)}$$ Given: $$C_{(s)}$$ + $O_{2(g)}$ \rightarrow $CO_{2(g)}$ -393.5 $H_{2(g)}$ + $1/2O_{2(g)}$ \rightarrow $1/2$ (e) Given the following reaction: $$2Ba_{(s)}$$ + $O_{2(g)}$ \rightarrow $2BaO_{(s)}$ ΔH° = -1107.0 KJ How many KJ of heat are released when: - (i) 5.75g of BaO_(s) is produced? - (ii) 15.75g of Ba_(s) reacts completely with oxygen to form BaO_(s)? [5] #### SECTION B: Structure and Bonding #### Question 4 (25 marks) - (a) Name any five elements in the periodic table which are most commonly associated with the majority of organic compounds. (5 marks) - (b) Using the principles and rules that govern the distribution of electrons in atomic orbitals, write the ground state electron configuration for each atom named in (a) above. (5 marks) | (c) | | is knowledge of electron configuration of an element important is
cular structure and properties of carbon compounds? | n the study of
(5 marks) | |------|----------------------|---|-------------------------------------| | (d) | With | the aid of suitable diagrams and formulas, explain the following ter | rms: | | | (i)
(ii)
(iii) | An Orbital Lewis Structure Chemical Bond | (4 marks)
(3 marks)
(3 marks) | | Ques | tion 5 (| 25 marks) | | | (a) | Brief
in ter | olecule (NH ₃) | | | | (i)
(ii)
(iii) | The Lewis Model
Valence Shell Electron Pair Repulsion (VSEPR) Theory
Orbital Hybridization | (3 marks)
(3 marks)
(3 marks) | | (b) | (i) | Write two resonance structures for the formate ion $HC\overline{O}_2$. | (3 marks) | | | (ii) | Explain what these structures predict for: | | | | | The carbon-oxygen bond lengths of the formate ion. The electrical charge on the oxygen atoms. | (2 marks)
(2 marks) | | (c) | | the dot structure, the dash structure and the bond – line formular fiving molecules: | or each of the | | | (i)
(ii)
(iii) | (CH ₃) ₂ CHOH
(CH ₃) ₂ CH CH ₂ CH ₂ CH ₂ OH
CH ₃ \vec{Q} CH ₃ | (3 marks)
(3 marks)
(3 marks) | | Ques | tion 6 (| 25 marks) | | | (a) | and d | an equation for the Lewis acid / Lewis base reaction between borimethyl sulphide [(CH ₃)2S]. Use curved arrows to track the flow how formal charges if present. | | | (b) | Write | a bond line formula for each of the following: | (8 marks) | | | (i) | (CH ₃) ₂ N CH ₂ CH ₃ | | | | (ii) | CH₃
CH₂ CH CH₂CH₂CH₂OH | | | | | | | # (iii) CH₂=CH CH₂CH=CHCH₃ - (c) Draw the three-dimensional structures for each of the following molecules. (9 marks) - (i) CH₃ Cl - (ii) CH₂ Br Cl - (iii) CH₄ # PERIODIC TABLE OF ELEMENTS | | | * | Ţ | * | | 7 | | | 6 | | | UI | | | 4 | | | ယ | | | 2 | - | , | -4 | | PERIODS | | | |-----|----------------|---------|--------------------|--------|-----|-------|--------|--------------|-----|--------|-----------|-----|--------|-----|----------|--------|----|---------------------|--------|-----------|------------|-------------|---|----------|-------|-----------|----------|--------| | | Wennine peries | Actinid | "Lanthanide Series | | 87 | ¥ | 223 | 55 | Č | 132.91 | 37 | Вb | 85.468 | 19 | * | 39.098 | Π | Na | 22.990 | w | Li | 6.941 | 1 | Ħ | 1.008 | IA | | | | | e per les | Carias | ie Serie | | 88 | Ra | 226.03 | 56 | Ва | 137.33 | 38 | Ş | 87.62 | 20 | င္က | 40.078 | 12 | Mg | 24.305 | 4 | Be | 9.012 | | | | IIA | 2 | | | | | _ | | | 89 | **Ac | (227) | 57 | *La | 138.91 | 39 | × | 88.906 | 21 | Sc | 44.956 | | | | | | | | | | IIIB | ယ | | | 90 | Th | 232 04 | 58
C | 140.12 | 104 | Rf | (261) | 72 | Hf | 178.49 | 45 | Zr | 91.224 | 22 | ï | 47.88 | | | | | | | | | | ¥. | 4 | | | 91 | Pa | 231 04 | 59 | 140.91 | 105 | Ha | (262) | 73 | Ta | 180.95 | 41 | Nb | 92.906 | 23 | ~ | 50.942 | | | | | | | | | | SH. | 5 | | | 92 | U | 238 03 | 6 | 144.24 | 106 | Unh | (263) | 74 | ¥ | 183.85 | 42 | Mo | 95.94 | 24 | Ç | 51.996 | | TRAN | | | | | | | i | ≨
E | 6 | | | 93 | N _D | 20 656 | 61 | (145) | 107 | Uns | (262) | 75 | Re | 186.21 | 43 | Tc | 98.907 | 25 | Mn | 54.938 | | TRANSITION ELEMENTS | | | | | | | | YIIR
R | 7 | | | 94 | Pu (244) | (244) | 63 | 150.36 | 108 | Uno | (265) | 76 | 0s | 190.2 | 44 | Ru | 101.07 | 26 | Fe | 55.847 | | ELEM | | | | | | | | | ∞ | g. | | 95 | Am | (743) | 63 | 151.96 | 109 | Une | (266) | 77 | Ŧ | 192.22 | 45 | Rh | 102.91 | 27 | င္ပ | 58.933 | | ENTS | | | | | | | | VIII R | 9 | GROUPS | | 96 | Cm | (747) | 2 2 | 157.25 | 110 | Uun . | (267) | 78 | Pt | 195.08 | 46 | Pd | 106.42 | 28 | Z | 58.69 | | | | | | | | | | | 10 | | | 97 | Bk. | (247) | 65 | 158.93 | | | | 79 | Au | 196.97 | 47 | A | 107.87 | 29 | <u>υ</u> | 63.546 | | | | Atomic No | Syn | Atomic mass | | | ŧ | ∄ : | = | | | 98 | G | (351) | 3.5 | 162.50 | | | | æ, | Hg | 200.59 | 48 | Cd | 112.41 | 30 | Zn | 65.39 | | | | ic No. | Symbol - | c mass → | | | ŧ | ∄ | 12 | | | 99 | F. (2) | (353) | 67 | 164.93 | | | | 81 | 1 | 204.38 | 49 | Ħ | 114.82 | 31 | ଦ୍ର | 69 723 | 13 | 2 | 26.982 | 5 | ▼ Β | 10.811 | | | 11117 | VIII | 13 | | | 100 | Fm (2) | (357) | 8 5 | 167.26 | | | | 82 | Pb | 207.2 | 50 | Sn | 118.71 | 32 | ଫୁ | 72.61 | 14 | Si | 28.086 | 6 | C | 12.011 | | | 1777 | AVA | 14 | | | 101 | Md | (358) | 69 | 168.93 | | | | & | ₿: | 208.98 | 51 | dS. | 121.75 | ဒ္ဌ | As | 74.922 | 15 | Þ | 30.974 | 7 | Z | 14.007 | | | 1 | VA | 15 | | | 102 | No. | (350) | 70
20 | 173.04 | | | | æ
42 | Po | (209) | 52 | Te | 127.60 | 34 | Se | 78.96 | 16 | S | 32.06 | 00 | 0 | 15.999 | | | 415 | VII.V | 16 | | | 103 | T.r | (360) | 71 | 174.97 | | | | 85 | λ | (210) | 53 | - | 126.90 | 35 | Вr | 79.904 | 17 | Ω | 35,453 | 9 | দ | 18.998 | | | 7115 | VIIIA | 17 | | | | | | | | | | | % | R | (222) | 54 | Xe | 131.29 | 36 | ζ. | 83.80 | 18 | Ar | 39.948 | 10 | Z | 20.180 | 2 | H | 4 003 | ATITA | 18 | | () indicates the mass number of the isotope with the longest half-life. # General data and fundamental constants | Quantity | Symbol | Value | |-------------------------|---|---| | Speed of light | C | 2.997 924 58 X 10 ⁸ m s ⁻¹ | | Elementary charge | е | 1.602 177 X 10 ⁻¹⁹ C | | Faraday constant | $F = N_A e$ | 9.6485 X 10 ⁴ C mol ⁻¹ | | Boltzmann constant | k | 1.380 66 X 10 ⁻²³ J K ⁻¹ | | Gas constant | $R = N_A k$ | 8.314 51 J K ⁻¹ mol ⁻¹ | | | , | 8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ | | | | 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ | | Planck constant | h | 6.626 08 X 10 ⁻³⁴ J s | | | $\hbar = \hbar/2\pi$ | 1.054 57 X 10 ⁻³⁴ J s | | Avogadro constant | N_A | 6.022 14 X 10 ²³ mol ⁻¹ | | Atomic mass unit | u | 1.660 54 X 10 ⁻²⁷ Kg | | Mass | | | | electron | \mathbf{m}_{e} | 9.109 39 X 10 ⁻³¹ Kg | | proton " | \mathbf{m}_{p} | 1.672 62 X 10 ⁻²⁷ Kg | | neutron | m, | 1.674 93 X 10 ⁻²⁷ Kg | | Vacuum permittivity | $\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$ | 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ | | | 4πε _ο | $1.112 65 \times 10^{-10} J^{-1} C^2 m^{-1}$ | | Vacuum permeability | μ_{o} | $4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | | $4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$ | | Magneton | | | | Bohr | $\mu_{\rm B} = {\rm e}\hbar/2m_{\rm e}$ | 9.274 02 X 10 ⁻²⁴ J T ⁻¹ | | nuclear | $\mu_N = e\hbar/2m_p$ | 5.050 79 X 10 ⁻²⁷ J T ⁻¹ | | g value | 8e | 2.002 32 | | Bohr radius | $a_o = 4\pi \epsilon_o \hbar/m_e^2$ | 5.291 77 X 10 ⁻¹¹ m | | Fine-structure constant | $\alpha = \mu_0 e^2 c/2h$ | 7.297 35 X 10 ⁻³ | | Rydberg constant | $R_{-} = m_e e^4/8h^3c\epsilon_o^2$ | $1.097\ 37\ \mathrm{X}\ 10^{7}\ \mathrm{m}^{-1}$ | | Standard acceleration | | | | of free fall | g | 9.806 65 m s ⁻² | | Gravitational constant | G | 6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻² | # Conversion factors | 1 cal = = 1 eV = | 4.184 j
1.602 : | joules (
2 X 10 | | 1 erg
1 eV/n | nolecul | е | ======================================= | 1 X 10 ⁻⁷ J
96 485 kJ mol ⁻¹ | | | | |------------------|--------------------|--------------------|------|--------------------|---------|-------|---|---|------------------------------|------------------|--| | Prefixes | femto | pico | nano | μ
micro
10-6 | milli | centi | deci | kilo | M
mega
10 ⁶ | G
giga
10° | |