UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION 2009/10

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 50 marks)
- (ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached

Detach the answer sheet from the question paper.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

	(A) electrons	atom contains _	(B) protons ar		
		e periodic table (B) 16			(E) 18
Mg		ld the most like		-	vith the general formula nd formed between
-		(B) KX ₂	(C) K ₂ X ₃	(D) K ₂ X ₂	(E) KX
5. The	correct name i	for K ₂ S is			
	\ / I	sulfate sulfide	` / *		(C) potassium bisulfide
(correct name for (A) sulfur oxion (D) sulfate	or SO is de	(B) sulfur mor (E) sulfite	noxide	(C) sulfoxide
7. The	correct name f	for N ₂ O ₅ is	·		
	(A) nitrous ox (D) nitric oxid	ide e	(B) nitrogen p (E) nitrogen of		(C) dinitrogen pentoxide
8. The c	correct name fo	or HClO2 is	·		
	· / *	acid ic acid	· ,		(C) hypochlorous acid
		formula for an (B) (NH ₄) ₂ SO			H_3S (E) N_2S_3
10. The	name of the i	onic compound	1 V ₂ O ₃ is		
		(III) oxide (III) trioxide			(C) vanadium(II) oxide
11. Wh	en the followi	ng equation is t Al(NO	palanced, the co $_3$), + Na,S \rightarrow A	-	·
(A) 2, 3	3, 1, 6 (B) 2	2, 1, 3, 2 (C)	2	2 0	(E) 2, 3, 2, 3

12.	A 2.25-g sample	of magnesium	nitrate, Mg(N	O3)2, contains	mol of this compound.
		(B) 65.8			_
13.	The formula weigh	ght of magnesiu	m fluoride (M	gF _a), rounded t	to one decimal place, is u.
		(B) 43.3		- - ·	
14.	Combining aqueo	ous solutions of	Bal ₂ and Na	SO ₄ affords	a precipitate of BaSO ₄ .
	Which ion(s) is/a				·
	(A) Ba ²⁺ only	(B) Na	ı⁺only	(C) Ba2+ and	SO ₄ ²⁻
	(D) Na ⁺ and I	(E) SO	$^{4^{2}}$ and I^{-}		
15.	The balanced net	ionic equation f	or precipitation	on of CaCO ₃ w	hen aqueous solutions of
	Na ₂ CO ₃ and C	aCl ₂ are mixed i	s	<u>.</u> .	
	(A) 2Na ⁺ (aq	$) + CO_3^{2-}(aq) \rightarrow$	Na, CO, (a	g)	
	(B) 2 Na ⁺ (ac	$(aq) + 2Cl^{-}(aq) \rightarrow$	2NaCl (aq)		
	, ,	$+C1^{-}(aq) \rightarrow Na$	` ~		
	• • • • • • • • • • • • • • • • • • • •	$+ CO_3^{2-}(aq) \rightarrow$	` <i>D</i>		
		(aq) + CaCl ₂ (ad	3.,	$eq) + CaCO_3(s)$	
16.	(B) 2 Na (s) + (C) CaO (s) + (D) 2 HClO ₄	n does the oxidate + NaOH (aq) \rightarrow - 2H ₂ O (l) \rightarrow 2 + H ₂ O (l) \rightarrow Cat (aq) + CaCO ₃ (s) H ₂ O (l) \rightarrow H ₂ S	NaCl (aq) + 2 NaOH (aq) $(OH)_2 \text{ (s)}$ $\rightarrow \text{ Ca(ClO}_2 \text{ (colors)}$	H ₂ O (l) + H ₂ (g)	
17.	(B) loss of ox (C) loss of ele (D) gain of ox	and tygen, loss of elegygen, gain of elegygen, gain of elegygen, loss of materials of elegygen, loss o	ectrons ectrons electrons ass	he	<i>,</i>
18.	What is the freque	ency (s ⁻¹) of ele	ectromagnetic	radiation that l	nas a wavelength of 0.53 m?
	(A) 5.7×10^8	(B) 1.8×10^{-9}	(C) 1.6×10^{-1}	0^{8} (D) 1.3×	10^{-33} (E) 1.3×10^{33}
19.	The energy of a r	hoton that has a	wavelength o	of 9.0 m is	J.
	(A) 2.2×10^{-26}	(B) 4.5×10^{2}	(C) 6.0×	10^{-23} (D) 2.7	J. (E) 4.5×10^{-25}
	The de Broglie wa 9.1×10 ⁻³¹ kg . The	-			mass of an electron is
					$(E) 8.4 \times 10^{-3}$

21 77	12.1		,		
21. There are(A) 1	(B) 2	(C) 4	snell. (D) 8	(E)	9
22. Each p-subshel	can accommod	late a maximur	n of	elec	etrons.
(A) 6	(B) 2	(C) 10	(D) 3	(E)	5
	e electron confi s ² 3p ⁶ 3d ⁶ (B) p ⁶ 3s ² 3p ⁶ 4s ² 4d ⁶	$1s^2 2s^2 2p^6 3s^2$	3p ⁶ 3d ⁶ 4s ²		$1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
24. There are	unpaired	d electrons in a	ground sta	ite fluorine	e atom.
	(B) 1				
25. The elements in configuration th	theat is the same as	_ period of the the electron c	periodic ta onfiguratio	able have a n of neon.	a core-electron
(A) first	(B) second	(C) third	(D) fourt	th (E)	fifth
26. Which group in of ns ² np ¹ ?	the periodic tab	le contains ele	ments with	the valence	e electron configuration
(A) 1	(B) 2	(C) 13	(D) 14	(E)	18
27. Which one of the	•			,	
(A) 2s	(B) ^{3p} y	(C) 3f	(D) ^{4d}	(E)	6s
28. Which one of the the order n, l, m				sible set of	quantum numbers (in
(A) 2, 1, -1,	1/2 (B) 2, 1/2 (E) 2,	1, 0, 0		0, 1/2	
(D) 2, 0, 1, -	1/2 (E) 2,	0, 2, +1/2			
29. Which electron	configuration re	presents a viol	ation of the	Pauli exc	lusion principle?
1s 2s	2	<u>p</u>	ls	2s	2p
A) 1		B)	11		Annual Control of the
1s 2s	2	P	1s	2s	2p
$C)$ $\uparrow \downarrow$ $\uparrow \downarrow$	<u> </u>	D)	11		
1s 2s	7	P			
E) 1	1				

	State.							
A)	ls 1	2s		2p	,	2s	2p ↑ ↑↓	
C)	1s	2s ↑↓	11	2p ↑ ↑ _D		2s	2p	
E)	1s	2s ↑	1	²p ↑ ↑				
31.	a period of group in the (A) inc	the perio e table.	dic table, a	and(B) increas	as you g	go from the	o from left to right acro bottom to the top of a decrease, increase	SS
32.	properties? (A) O,	S, Se	(B) 1	d all members N, O, F Ar, Na, Mg	s be expected (C) Ca		very similar chemical	
33.	Which eler those of Ca (A) K	?	ld be expe 3) Ba		chemical an (D) Ga		properties closest to (E) Na	
34.	The atomic (A) effe (B) effe (C) effe (D) the (E) both	radius of ective nucective nucective nucective nucective principal	main-grou lear charg lear charge lear charge quantum re e nuclear c	up elements go e increases do e decreases do e zigzags dow number of the	enerally income a group own a group on a group valence or es down a g	reases dow	n a group because	
35.	Which one	of the foll	owing ato	ms has the lar	gest radius	?		
	(A) Sr	(B) Ca	(C) K	(D) Rb	(E)	Y	
36.	Which of th	ne followi	ng is an is	oelectronic se	eries?			
	` '	-	,Te ²⁻	• •		(C) S, Cl,	Ar, K	

30. Which electron configuration represents a violation of Hund's rule for an atom in its ground

37.	Of the following	atoms, which	has the larges	t <u>first</u> ionization	n energy?	
	(A) Br	(B) O	(C) C	(D) P	(E) I	
38.	Which of the foll	owing correctl	y represents t	he <u>second</u> ioniz	ation of phospho	rus?
	(A) $P^{+}(g) + e$	$^- \rightarrow P^{2+}(g)$	(B) $P(g) \rightarrow$	$P^{+}(g) + e^{-}$	(C) $P^{-}(g) + e^{-}$	$\rightarrow P^{2-}(g)$
	(D) $P^+(g) \rightarrow$	$P^{2+}(g) + e^{-}$	(E) $P^{+}(g) +$	$e^- \to P(g)$		
39.	In the Lewis symunpaired electron		ine atom, the	re are	paired and	
			(C) 2, 5	(D) 6, 1	(E) 0, 5	
40.	Based on the oct	et rule, magne	sium most lik	ely forms a	ion.	
	Based on the oct (A) Mg ²⁺	(B) Mg^{2-}	(C) Mg ⁶⁻	(D) Mg ⁶⁺	(E) Mg-	
41.	Which one of the	e following spe	cies has the e	lectron configu	ration[Ar]3d ⁴ ?	
	(A) Mn ²⁺	(B) Cr ²⁺	(C) V ³⁺	(D) Fe ³⁺	(E) K ⁺	
42.	Electronegativity		from left to ri	ght within a per	riod and	from top
		, increases		ases, increases ases, stays the sa	(C) increases,	decreases
43.	The formal charge [S S		where the Lew +4 (E) -		e ion is:
44.	How many equiv	alent resonanc	e forms can b	e drawn for SC	o ₂ without expand	ling octet on
	the sulfur atom (s (A) 0			(D) 4	(E) 1	
45.	The molecular ge				yramidal (E) o	ctahedral
	Of the following intermolecular for	substances, on	ly	has London o	lispersion forces	
	(A) CH ₃ OH	(B) NH ₃	(C) H_2S	(D) Kr	(E) HCI	
47.	Of the following (A) H ₂ O	substances, (B) CO ₂	(C) CH ₄	s the highest bo (D) Kr	iling point. (E) NH ₃	

48. The ease with which the charge delectrical field is called the	istribution in a molecule can be distorted by an external.
	(B) hydrogen bonding (C) polarizability
(D) volatility	(E) viscosity
49. Hydrogen bonding is a special ca	
(A) London-dispersion forces	(B) ion-dipole attraction
(C) dipole-dipole attractions(E) none of the above	(D) ion-ion interactions
50. The intermolecular force(s) respo	nsible for the fact that CH ₄ has the lowest boiling point in
the set CH ₄ ,SiH ₄ ,GeH ₄ ,SnH ₄ is/	are
(A) hydrogen bonding	
(B) dipole-dipole interactions	
(C) London dispersion forces	
, , , , , ,	but also dipole-dipole interactions
(E) mainly London-dispersion	forces but also dipole-dipole interactions

Please insert your answer sheet inside the answer book used for section B.

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions.

Question 1 (25 marks)

(a) Lithium and nitrogen react in a combination reaction to produce lithium nitride:

 $6\text{Li}(s) + N_2(g) \rightarrow 2\text{Li}_3N(s)$

In a particular experiment, 3.50-g samples of each reagent are reacted. What is the theoretical yield of lithium nitride? [6]

- (b) Caffeine, a primary stimulant in coffee, has molar mass 194.19 g/mol and mass composition 49.48% C, 5.19% H, 28.85 % N and 16.48% O. What is the molecular formula of caffeine? [7]
- (c) A chemist wants to extract the gold from 15.0 g of gold(II) chloride dihydrate, AuCl₂'2H₂O, by electrolysis of an aqueous solution.
 - (i) What mass of gold could be obtained from this sample?
 - (ii) How many moles of Cl₂(g) will be collected?

[6]

- (d) Identify the isotope that has the following atoms (give the chemical symbol and name of element)
 - (i) 6 neutrons, 5 protons and 5 electrons
 - (ii) 32 neutrons, 28 protons and 28 electrons
 - (iii) 46 neutrons, 36 protons and 36 electrons

[6]

Question 2 (25marks)

- (a) Consider the following elements: magnesium, carbon, and chlorine.
 - (i) Write the ground state electron configuration of each element
 - (ii) Use an appropriate pair of the above elements and their Lewis symbols to illustrate covalent bond formation.
 - (iii) Use an appropriate pair of the above elements and their Lewis symbols to illustrate ionic bond formation. [7]
- (b) Consider the following molecules: CF₄ and SF₄
 - (i) Write the Lewis structure of each.
 - (ii) Predict the shape of the molecule using VSEPR model.
 - (iii) Predict, giving reasons, which molecule has the higher boiling point.

[10]

- (c) For the molecule N₂O
 - Write the Lewis structures that contribute to its resonance hybrid. (skeleton is N-
 - Calculate the formal charges on all atoms in the above structures. (ii)
 - (iii) Select the structure that is likely to make a dominant contribution to the resonance hybrid. [8]

Question 3 (25marks)

12.0 kg of SO₂ and 8.00 kg of H₂S are allowed to react according to the reaction: (a)

$$8 SO_2(g) + 16 H_2S(g) \rightarrow 3 S_8(s) + 16 H_2O(l)$$

- (i) Identify the oxidizing and reducing agent in the reaction
- (ii) Determine the liming reactant and mass of sulphur produced. [8].
- (b) A student prepared a solution containing 7.112 g Na₂CO₃ in a 250.0 mL volumetric flask. He transferred some of the solution into a buret. What volume of the solution should be dispensed from the buret to provide
 - 5.112 x 10⁻³ mol Na₂CO₃? 3.451 x 10⁻³ mol Na⁺? (i)
 - (ii)

[7]

- When 0.236 g of aspirin (a compound of carbon, hydrogen and oxygen) is burned in (c) excess oxygen, 0.0945 g of water and 0.519 g of carbon dioxide are formed.
 - (i) Determine the empirical and molecular formulas of aspirin.
 - (ii) Write the balanced equation for the combustion reaction.

[10]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e^{-}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{e}	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	$4\pi\epsilon_{o}$	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T}^2 \mathrm{J}^{-1} \mathrm{m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 j 1.602 2	joules (2 X 10		1 erg 1 eV/n		e	=	1 X 10 96 485) ⁻⁷ J 5 kJ mol	[-1
Prefixes	femto	pico	nano	micro	milli	centi	deci	kilo	M mega 10 ⁶	giga

PERIODIC TABLE OF ELEMENTS

	7			6			υn	•		4			3			2					PERIODS		
87	Fr	223	55	Cs	132.91	37	Rb	85.468	[9	~	39.098	=	Z	22.990	<u>.</u>	Ι	6.941			1.008	N.	_	
88	Ra	226.03	56	Ba	137.33	38	\mathbf{Sr}	87.62	20	Ca	40.078	12	Mg	24.305	4	Ве	9.012				ΛΙΙ	2	
89	**Ac	(227)	57	*La	138.91	39	Y	88.906	21	Sc	44.956							_			IIIB	w	
104	Rf	(261)	72	Нf	178.49	40	Zr	91.224	22	Ti	47.88										IVB	4	
105	Ha	(262)	73	Ta	180.95	4	Zb	92.906	23	<	50.942										VΒ	5	
106	Unh	(263)	74	*	183.85	42	Mo	95.94	24	Cr	51.996		TRAN								VIB	6	
107	Uns	(262)	75	₽e	186.21	43	Te	98.907	25	Mn	54.938		TRANSITION ELEMENTS								VIIB	7	
801	Uno	(265)	76	Os	190.2	44	Ru	101.07	26	Fe	55.847		ELEM									8	G
109	Une	(266)	77	Ţ	192.22	45	Rh	102.91	27	Co	58.933		ENTS								VIIIB	9	GROUPS
011	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	Z	58.69											10	
			79	Au	196.97	47	Ag	107.87	29	Cu	63.546				Atomic No.	Symbol	Atomi				ΙΒ	11	
			80	Hg	200.59	48	Cd	112.41	30	Zn	65.39				ic No.		Atomic mass)				IIB	12	
			81	1	204.38	49	In	114.82	31	Ga	69.723	13	AI	26.982	5	→ B	10.811				AIII	13	
			82	PЬ	207.2	50	Sn	118.71	32	Ge	72.61	14	Si	28.086	6	C	12.011				IVA	14	
			23	B :	208.98	51	Sb	121.75	33	As	74.922	15	P	30.974		Z	14.007				٧V	15	
			84	Po	(209)	52	Te	127.60	34	Se	78.96	16	S	32.06	8	0	15.999				VIA	16	
			85	At	(210)	53	_	126.90	35	Br	79.904	17	CI	35.453	9	শ্ৰ	18.998				VIIA	17	
			86	Rn	(222)	54	Xe	131.29	36	Kr	83.80	18	Ar	39.948	10	Ne	20.180	2	He	4.003	VIIIA	18	

*Lanth:

**Acti

	1 10 12			(1)	1502		1522	2002	-		
	140.12		144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26
hanide Series	Сс	Pr	Z	Pm	Sm	Εu	Gd	ď	Dγ	Ho	Ŧ
	58	_	60	61	62	63	64	65	66	67	68
tinide Series	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)
	Th	Pa	U	N _p	Pu	Am	Cm	Bk	Cf	Εs	Fm
	90	91	92	93	94	95	96	97	98	99	100

() indicates the mass number of the isotope with the longest half-life.

(258) **Md**

(259) **No** 102

(260) **Lr** 103

168.93 **Tm** 69

173.04 **Yb** 70

174.97 **Lu** 71

UNIVERSITY OF SWAZILAND

C111 SECTION A ANSWER SHEET

STU	IDENT ID I	NUMBER:			OATE:	
ansv	ver sheet pr s and then	ovided. If you	change your a ound the corre	nswer, please of ct one. If mo	the letter for that answancel the wrong answer than one option ha	ver with a
1.	(A)	(B)	(C)	(D)	(E)	
2.	(A)	(B)	(C)	(D)	(E)	
3.	(A)	(B)	(C)	(D)	(E)	
4.	(A)	(B)	(C)	(D)	(E)	
5.	(A)	(B)	(C)	(D)	(E)	
6.	(A)	(B)	(C)	(D)	(E)	
7.	(A)	(B)	(C)	(D)	(E)	
8.	(A)	(B)	(C)	(D)	(E)	
9.	(A)	(B)	(C)	(D)	(E)	
10.	(A)	(B)	(C)	(D)	(E)	
11.	(A)	(B)	(C)	(D)	(E)	
12.	(A)	(B)	(C)	(D)	(E)	
13.	(A)	(B)	(C)	(D)	(E)	
14.	(A)	(B)	(C)	(D)	(E)	
15.	(A)	(B)	(C)	(D)	(E)	
16.	(A)	(B)	(C)	(D)	(E)	
17.	(A)	(B)	(C)	(D)	(E)	
18.	(A)	(B)	(C)	(D)	(E)	
19.	(A)	(B)	(C)	(D)	(E)	
20.	(A)	(B)	(C)	(D)	(E)	
21.	(A)	(B)	(C)	(D)	(E)	
22.	(A)	(B)	(C)	(D)	(E)	
23.	(A)	(B)	(C)	(D)	(E)	

24. (A) (B) (C) (D) (E)

STU	JDENT ID	NUMBER:			
_					
25.	(A)	(B)	(C)	(D)	(E)
26.	(A)	(B)	(C)	(D)	(E)
27.	(A)	(B)	(C)	(D)	(E)
28.	(A)	(B)	(C)	(D)	(E)
29.	(A)	(B)	(C)	(D)	(E)
30.	(A)	(B)	(C)	(D)	(E)
31.	(A)	(B)	(C)	(D)	(E)
32.	(A)	(B)	(C)	(D)	(E)
33.	(A)	(B)	(C)	(D)	(E)
34.	(A)	(B)	(C)	(D)	(E)
35.	(A)	(B)	(C)	(D)	(E)
36.	(A)	(B)	(C)	(D)	(E)
37.	(A)	(B)	(C)	(D)	(E)
38.	(A)	(B)	(C)	(D)	(E)
39.	(A)	(B)	(C)	(D)	(E)
40.	(A)	(B)	(C)	(D)	(E)
41.	(A)	(B)	(C)	(D)	(E)
42.	(A)	(B)	(C)	(D)	(E)
43.	(A)	(B)	(C)	(D)	(E)
44.	(A)	(B)	(C)	(D)	(E)
45.	(A)	(B)	(C)	(D)	(E)
46.	(A)	(B)	(C)	(D)	(E)
4 7.	(A)	(B)	(C)	(D)	(E)
48.	(A)	(B)	(C)	(D)	(E)
49.	(A)	(B)	(C)	(D)	(E)
50.	(A)	(B)	(C)	(D)	(E)