UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2009/10

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

- (i) Answer all questions in section A (total 50 marks)
- (ii) Answer any 2 questions in section B (Each question is 25 marks)

Non-programmable electronic calculators may be used.

A data sheet, a periodic table and answer sheet for section A are attached Detach the answer sheet from the question paper.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO IS GRANTED BY THE CHIEF INVIGILATOR.

SECTION A (50 Marks)

This section consists of multiple choice questions. Correct answer must be indicated by putting a circle around the letter for that answer on the answer sheet provided. If you change your answer, please cancel the wrong answer with a cross and then put a circle around the correct one. If more than one option has a circle around it a zero will be given for that question. Attempt all 50 questions.

1. The	(A) the num (B) the total (C) the num (D) the num	ber indicates aber of neutrons I number of neutrons aber of protons of the protons in the protons in the proton of different	in a nucleus trons and proto or electrons in 1 g of an elem	a neutral atom		
2. Wh		oms constitutes $X = (B)_{6}^{14} X^{-1}$			element? $^{19}_{10}X ^{-19}_{9}X$ (E) $^{20}_{10}X ^{-21}_{11}X$	
	erties.				hemical and physical	
	(A) Li	(B) At	(C) Rb	(D) Ba	(E) Cs	
4. Wł		nula of the comp (B) Sr ₃ N ₂			um ions and nitrogen ions? (E) SrN ₃	
5. The		e for Al ₂ O ₃ is _				
	(A) aluminu (D) aluminu	m oxide m hydroxide	(B) dialumin (E) aluminu	num oxide m trioxide	(C) dialuminum trioxide	
6. The	e formula of p (A) PCl4	ohosphorus pent (B) PCl ₅	achloride is (C) P ₂ Cl ₁₀	(D) P ₂ Cl ₅	(E) PCl ₃	
7. The	correct name	for HClO ₃ is _	•			
	(A) hydroch	loric acid s acid	(B) perchlor	ic acid lorous acid	(C) chloric acid	
8. The	correct form (A) Mo(ClC	ula for molybdo	enum(IV) hypo (B) Mo(ClC	ochlorite is	(C) Mo(ClO ₂) ₄	
		04)4			-	
	s compound i (A) chromiu (C) monoch	s m chlorine romium trichlor	(B) c	nd whose formu hromium(III) c hromium(III) tr		
	(A) chromiu	m chlorine romium trichlor	` '	` '		

10.	The name of the binary compound N_2O_4 is
	(A) nitrogen oxide (B) nitrous oxide (C) nitrogen(IV) oxide (D) dinitrogen tetroxide (E) oxygen nitride
11.	When the following equation is balanced, the coefficients are
	$NH_3 (g) + O_2 (g) \rightarrow NO_2 (g) + H_2O (g)$
	(A) 1, 1, 1, 1 (B) 4, 7, 4, 6 (C) 2, 3, 2, 3 (D) 1, 3, 1, 2 (E) 4, 3, 4, 3
	The formula weight of calcium nitrate (Ca(NO ₃) ₂), rounded to one decimal place, is
	(A) 102.1 (B) 164.0 (C) 204.2 (D) 150.1 (E) 116.1
	There are molecules of methane in 0.123 mol of methane (CH4).
	(A) 5 (B) 2.46×10^{-2} (C) 2.04×10^{-25} D) 7.40×10^{22} (E) 0.615
14.	What are the spectator ions in the reaction between KOH (aq) and HNO ₃ (aq)?
	(A) K^+ and H^+ (B) H^+ and OH^- (C) K^+ and NO_3^-
	(D) H ⁺ and NO ₃ ⁻ (E) OH ⁻ only
15.	When aqueous solutions of AgNO ₃ and KI are mixed, AgI precipitates. The balanced
	net ionic equation is
	(A) $Ag^+(aq) + I^-(aq) \rightarrow AgI(s)$
	(B) $Ag^+(aq) + NO_3^-(aq) \rightarrow AgNO_3(s)$
	(C) $Ag^+(aq) + NO_3^-(aq) \rightarrow AgNO_3(aq)$
	(D) $AgNO_3(aq) + KI(aq) \rightarrow AgI(s) + KNO_3(aq)$
	(E) $AgNO_3(aq) + KI(aq) \rightarrow AgI(aq) + KNO_3(s)$
16.	In which reaction does the oxidation number of oxygen increase?
	(A) $Ba(NO_3)_2(aq) + K_2SO_4(aq) \rightarrow BaSO_4(s) + 2KNO_3(aq)$
	(B) HCl (aq) + NaOH (aq) \rightarrow NaCl (aq) + H ₂ O (l)
	$(C) MgO (s) + H2O (l) \rightarrow Mg(OH)2(s)$
	(D) $2 \text{ SO}_2 (g) + O_2 (g) \rightarrow 2 \text{ SO}_3 (g)$
	(E) $2 H_2 O(l) \rightarrow 2 H_2(g) + O_2(g)$
17.	Which of the following is an oxidation-reduction reaction?
	(A) Cu (s) $+2$ AgNO ₃ (aq) $\rightarrow 2$ Ag (s) $+$ Cu(NO ₃) ₂ (aq)
	(B) HCl (aq) + NaOH (aq) \rightarrow H ₂ O (l) + NaCl (aq)
	$(C) AgNO_3(aq) + HCl(aq) \rightarrow AgCl(s) + HNO_3(aq)$
	(D) Ba($C_2H_3O_2$) ₂ (aq) + Na ₂ SO ₄ (aq) \rightarrow BaSO ₄ (s) + 2Na $C_2H_3O_2$ (aq)
	$(E) H2CO3(aq) + Ca(NO3)2(aq) \rightarrow 2HNO3(aq) + CaCO3(s)$

18.	The wavelengt	h of light that ha	as a frequen	cy of 1.2	20×10^{1}	³ s ⁻¹ is	m.
	(A) 25.0	(B) 2.50×10)-5 ((C) 0.040	0 (1	D) 12.0	(E) 2.5
19.	The wavelengt	h of a photon tha	at has an en	ergy of	5.25×1	10 ⁻¹⁹ J is	m.
	(A) 3.79×1 (D) 4.21×1	0^{-7} (B) 2 0^{-24} (E) 3	2.64×10^6 3.79×10^7	(C) 2.38	×10 ²³	
		(m/s) must a 10.		t be mov	ring to	have a de B	roglie wavelength
	(A) 4.1	(B) 1.9×10 ⁻¹¹	(C) 2.0	×10 ¹²	(D) 3	.3×10 ⁻⁴²	$(E)9.1\times10^{31}$
21.	There are	orbitals i	in the third	shell.			
	(A) 25	orbitals : (B) 4	(C) 9	(D) 16	(E) 1	
22.	-01	rbitals are spheri	ically symm	etrical.			
	(A) s	rbitals are spheri (B) p	(C) d	(D) f	(E) g	
23.	[Ar]4s ² 3d ¹⁰ 4p ³	is the electron	configuration	on of a(n)	ator	n.
	(A) As	(B) V	(C) P	(D) Sb	(E) Sn	ı
24.	There are	unpaired	l electrons i	n a grou	nd stat	e phosphoru	s atom.
	(A) 0	(B) 1	(C) 2	(D	3	(E) 4	
25.	All of the	have a v	alence shel	l electro	n confi	iguration ns	¹ .
		ases (B) hatetals (E) al) Lanth	nanides	
26.	Elements in gro	ou p	have a np	electro	n confi	guration in	the outer shell.
	(A) 14	(B) 16	(C) 17	(D)) 18	(E) 15	
27.	Which one of t	he following is a	an incorrect	subshell	notati	on?	
	(A) 4f	(B) 2d	(C) 3s) 2p	(E) 3d	
		he following reptom? (arranged		_	le set o	f quantum n	umbers for an
	(A) 2, 2, -1,		(B) 1, 0, 0			(C) 3,	3, 3, 1/2
	(D) 5, 4,- 5,	1/2	(E) 3, 3, 3	3, -1/2			

29. Which electron configuration represents a violation of the Pauli Exclusion Principle? 2s15 2p ls 2p B) 2s 2p 1 1 2s 2p 1 30. Which electron configuration represents a violation of Hund's rule for an atom in its ground state? 2s 2p 15 2s 2p 18 B) 2s2p 2p T

- (A) alkaline earth metals
- (B) alkali metals
- (C) halogens

- (D) transition metals
- (E) chalcogens
- 32. In which set of elements would all members be expected to have very similar chemical properties?
 - (A) O, Si, Se
- (B) N, O, F
- (C) Na, K, Cs

- (D) S, Se, Si
- (E) Ar, Na, Mg
- 33. Which element would be expected to have chemical and physical properties closest to those of fluorine?
 - (A) S
- (B) Fe
- (C) Ne
- (D) O
- (E) C1

34.	(B) up a gro (C) down a (D) up a gro	generally increating group and from lessenger group and from the group and from rigroup; the perion of the perion	n right to left ac ft to right acros n left to right ac ght to left acros	cross a period ss a period cross a period ss a period	
35.	Which one of t (A) O	he following at (B) F		-	(E) Ne
36.	is	isoelectronic w	vith argon and	is	isoelectronic with neon.
	(A) Cl ⁻ , F ⁻	(B) Cl⁻,Cl⁺	(C) F+,F	(D) Ne ⁻ , Kı	r^+ (E) Ne^-, Ar^+
37.	(C) A1 > S	below, which g > Al > Ar > i > S > Cl > > Cl > Al >	Si (B) Ar (D)	Ar > C1 > S	> Si > Al
38.	Which of the fo	ollowing has the (B) K			
39.			and	_ unpaired ele	ctrons in the Lewis symbol
	for a phosphoru (A) 4, 2	(B) 2, 4	(C) 2, 3	(D) 4, 3	(E) 0, 3
40.	Based on the o	ctet rule, phosp	horus most like	ely forms a	ion.
	Based on the or (A) P ³⁺	(B) P ³⁻	(C) P ⁵⁺	(D) P ⁵⁻	(E) P ⁺
41.		ctron configura 3d ⁶ (B) 3d ⁹ (E) [$[Ar]4S^{0}3d^{7}$		3d ⁵
42.	A non-polar bor	nd will form be	tween two	atoms	of
	electronegativit (A) differen	y.	(B) identical	l, different	(C) different, different
43.	The formal cha	rge on nitrogen	in NO ₃ -is		
	O				
	(A) -1	(B) 0	(C) +1	(D) +2	(E) -2
			6		

4	44. How many equivalent resonance forms can be drawn for ${\rm CO_3}^{2-}$ (C is the central atom)?
	(A) 1 (B) 2 (C) 3 (D) 4 (E) 0
2	45. The molecular geometry of the SF ₂ molecule is
	(A) linear (B) bent (C) trigonal planar (D) tetrahedral (E) octahedral
2	 Of the following substances, only has London dispersion forces as its only intermolecular force.
	(A) CH_3OH (B) NH_3 (C) H_2S (D) CH_4 (E) HCI
2	47. Which one of the following should have the lowest boiling point? (A) PH ₃ (B) H ₂ S (C) HCl (D) SiH ₄ (E) H ₂ O
2	48 are particularly polarizable. (A) Small nonpolar molecules (B) Small polar molecules (C) Large nonpolar molecules (D) Large polar molecules (E) Large molecules, regardless of their polarity,
4	49. When NaCl dissolves in water, aqueous Na ⁺ and Cl ⁻ ions result. The force of attraction that exists between Na ⁺ and H ₂ O is called a(n) interaction.
	(A) dipole-dipole (B) ion-ion (C) hydrogen bonding (D) ion-dipole (E) London dispersion force
5	50. What is the predominant intermolecular force in CBr ₄ ?
	(A) London-dispersion forces (B) ion-dipole attraction (C) ionic bonding (D) dipole-dipole attraction (E) hydrogen-bonding
1	Please insert your answer sheet inside the answer book used for section B.
	7

SECTION B (50 Marks)

There are three questions in this section. Each question is worth 25 marks. Answer any two questions.

Question 1 (25 marks)

(a) Calcium oxide reacts with water in a combination reaction to produce calcium hydroxide:

 $CaO(s) + H_2O(l) \rightarrow Ca(OH)_2(s)$

- A 4.50-g sample of CaO is reacted with 4.34 g of H₂O. How many grams of water remain after completion of reaction? [6]
- (b) A chemist measured out 5.50 g of copper(II) bromide tetrahydrate, CuBr₂·4H₂O.
 - (i) How many moles of CuBr₂·4H₂O were measured out?
 - (ii) How many moles of Br ions are present in the sample?
 - (iii) How many water molecules are present in the sample?
 - (iv) What fraction of the total mass of the sample was due to copper? [9]
- (c) Nicotine has the mass composition 74.03% C, 8.70% H and 17.27% N and a molar mass 162.23 g/mol. Determine the molecular formula of nicotine. [6]
- (d) How many protons, electrons and neutrons are present in the following species

 (i) ${}^{9}\text{Be}^{2^{+}}$ (ii) ${}^{32}\text{S}^{2^{-}}$ [4]

Question 2 (25marks)

- (a) Consider the following elements: potassium, oxygen, and fluorine.
 - (i) Write the ground state electron configuration of each element
 - (ii) Use an appropriate pair of the above elements and their Lewis symbols to illustrate covalent bond formation.
 - (iii) Use an appropriate pair of the above elements and their Lewis symbols to illustrate ionic bond formation. [7]
- (b) Consider the following molecules: BF₃ and ClF₃
 - (i) Write the Lewis structure of each.
 - (ii) Predict the shape of the molecule using VSEPR model.
 - (iii) Predict, giving reasons, which molecule has the higher boiling point. [10]
- (c) Explain why the lattice enthalpy of MgO (3850 kJ/mol) is greater than that of MgS (3406 kJ/mol) [4]
- (d) Arrange the cations K⁺, Mg²⁺, Al³⁺, Cs⁺ in order of increasing polarizing power. Explain the reasons for your arrangement. [4]

Question 3 (25marks)

(a) A 10.0 mL sample of 3.0 M KOH(aq) is transferred into a 250.0 mL volumetric flask and diluted to the mark. It was found that 38.5 mL of this diluted solution was needed to reach the stoichiometric point in a titration of 10.0 mL of a phosphoric acid solution, according to the reaction

$$3 \text{ KOH(aq)} + \text{H}_3\text{PO}_4(\text{aq}) \rightarrow \text{K}_3\text{PO}_4(\text{aq}) + 3 \text{H}_2\text{O}$$

- (i) Calculate the molarity of the H_3PO_4 in the solution.
- (ii) What mass of H₃PO₄ was in the initial sample?

[9]

- (b) A sample of quinine of mass 0.487 g was burned in excess oxygen and 1.321 g CO₂, 0.325 g H₂O and 0.0421 g N₂ were produced. The molar mass of quinine is 324 g/mol. Determine the empirical and molecular formulas of quinine, [10]
- (c) Explain how you would prepare 500.0 mL of 0.010 M KMnO₄(aq) staring with
 - (i) solid KMnO₄
 - (ii) 0.050 MKMnO₄(aq) stock solution

[6]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e^{-}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (1.602 2 X 10 ⁻¹	, 1)	1 erg 1 eV/molecule			=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹			
Prefixes	f p femto pico 10 ⁻¹⁵ 10 ⁻¹²	nano	micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°	

PERIODIC TABLE OF ELEMENTS

		V	2			08	٠.		8			0	,		59	٠.							
	18	VIIIA	4.003	He	2	20.180	Ne	01	39.948	Ar	- 18	83.80	Kr	36	131.29	Xe	54	(222	Ru	98			
ļ	17	VIIA		-	·	18.998	<u> </u>	6	35.453	ひ	17	79.904	Br	35	126.90		53	(210)	Αt	85			
	16	VIA				15.999	0.	8	32.06	S	16	78.96	Se	34	127.60	Te	52	(506)	Po	84			
	15	٧A				14.007	Z	7	30.974	Д	15	74.922	As	33	121.75	Sp	51	208.98	Bi	83			
	14	IVA	į			12.011	ပ	9	28.086	Š	41	72.61	g	32	118.71	Sn	50	207.2	Pb	82			
	13	IIIA				- 10.811	B •	ر ا	26.982	ΨI	13	69.723	Сa	31	114.82	In	46	204.38	Ξ	81			
	12	118				Atomic mass -	Symbol -	Atomic No.				65.39	Zn	30	112.41	P C	48	200.59	Hg	80			
	=	18				Atomi	Syn	Atom				63.546	Cn	29	107.87	Ag	47	196.97	Αu	79			
	10											58.69	Z	28	106.42	Pd	46	80.261	Pt	28	(267)	Unn	110
GROUPS	6	VIIIB								ENTS		58.933	ပိ	27	102.91	Rh	45.	192.22	Ir	77	(392)	Une	109
9	∞									NELEMENTS		55.847	Fe	26	101:07	Ru	44	190.2	os	9/	(265)	Uno	108
	7	VIIB								TRANSITION		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(292)	Uns	107
	9	VIB								TRAN		51.996	Ċ	24	95.94	Mo	42	183.85	*	74	(263)	Unh	901
	5	VB										50.942	>	23	92.906	S P	41	180.95	Та	73	(262)	Ha	105
	4	IVB										47.88	Ξ	22	91.224	\mathbf{Zr}	40 .	178.49	Hť	72	(261)	Rf	104
	3	(IIB										44.956	Sc	21	906.88	>	39	138.91	*La	57	(227)	**Ac	68
	2	ΥĮ				9.012	Be	4	24.305	Mg	12	40.078	C	20	87.62	Sr	38	137.33	Ва	98	226.03	Ra	88
	_	<	1.008	=	_	6.941	Ļ	٣	22.990	ĸZ	=	39.098	×	61	85.468	Rb	37	132.91	Cs	55	223	Fr	87
		PERIODS		_		ļ	7			")		4			5			9			7	

Series	
nthanide	

**Actinide Series

	(260) Lr 103	
173.04 Yb 70		
168.93 Tm 69	(258) Md 101	
167.26 Er 68	(2 <i>57</i>) Fm 100	
164.93 Ho 67	(252) Es 99	11.6
162.50 Dy 66	(251) Cf 98	Land Land
	(247) Bk 97	12. 12.
157.25 Gd 64	(247) Cm 96	9:1 51 71 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
151.96 Eu 63	(243) Am 95	1112 :20
150.36 Sm 62	(244) Pu 94	7
(145) Pm 61	237.05 Np 93	
144.24 Nd 60	t 238.03 U 92	in diameter than
140.91 Pr 59	231.04 Pa 91	
140.12 Ce 58	232.04 Th 90	

() indicates the mass number of the isotope with the longest half-life.