UNIVERSITY OF SWAZILAND

SUPPLEMENTARY FINAL EXAMINATION

ACADEMIC YEAR 2008/2009

TITLE OF PAPER:

INORGANIC CHEMISTRY

COURSE NUMBER:

C301

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS.

ANSWER ANY FOUR (4)

QUESTIONS. EACH QUESTION IS

WORTH 25 MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

Question One

- a) Give the IUPAC name for each of the following:
 - i) $K_3[Co(NO_2)_6]$
 - ii) $[Cr(en)_3][Cr(Ox)_3]$
 - iii) $[Cl_3W(\mu-Cl)_3WCl_3](ClO_4)_3$
 - iv) $W(CH_2CH_3)_6$

[6 mks]

- b) Give the formula and draw the structure of each of the following:
 - i) Sodium pentacyanonitrosylferrate(II) dihydrate
 - ii) Potassium pentachloronitroosmate(IV)
 - iii) Tetraammineaquacobalt(III)-μ-cyanobromotetracyanocobaltate(III)

[6 mks]

- c) State the type of isomerism that may be exhibited by the following sixcoordinate complexes, and draw structures of the isomers:
 - i) $[Pt(en)_2Cl_2]Br_2$
 - ii) Pd(bpy)(NCS)₂
 - iii) Rh(acac)₃

[13 mks]

Question Two

a) A monomeric complex of cobalt gave the following result on analysis:

Species	Co	NH ₃	Cl	SO ₄ ² -	H ₂ O
%, by	21.24	24.77	12.81	34.65	?
mass		·			

The compound is diamagnetic and contains no other groups or elements, except that water might be present.

- i) Using the above data, calculate the formula of the compound
- ii) Check if there is any water present. If water is present, what is the final formula of the compound?
- iii) Sketch the structures of all possible isomers

[8 mks]

b) The value of μ_{eff} for $[\text{CoF}_6]^{3-}$ is 5.63 BM. Explain why this value does not agree with the value of magnetic moment calculated from the spin-only formula.

- c) Explain why under the influence of an octahedral field, the energies of the d
 orbitals are raised or lowered. With respect to what are orbital energies raised
 or lowered? [7 mks]
- d) What is the expected ordering of Δ_0 for $[Fe(OH_2)_6]^{2+}$, $[Fe(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$? Rationalize your answer.

[4 mks]

Question Three

a) A reaction of trans-[Pt(PEt₃)₂(Ph)Cl] with thiourea, tu, in methanol follows a two-term rate law with

$$k_{obs} = k_1 + k_2[tu]$$

Give a plausible mechanism for the reaction. Suggest how the values of k_1 and k_2 may be obtained.

[8 mks]

b) $[V(H_2O)_6]^{3^+}$ has absorption bands at 17800, 25700 and 34500 cm⁻¹. Using the Tanbe-Sugano diagram for a d² configuration, estimate values of Δ_0 and B for this complex.

[17 mks]

Question Four

a) Complete and balance the following reactions:

i)
$$Cr + Cl_2 \longrightarrow$$

ii)
$$Mo + Cl_2 \longrightarrow$$

iii)
$$Cr + O_2$$
 \longrightarrow

iv)
$$M_0 + O_2 \longrightarrow$$

[4 mks]

b) Sketch the structures of chromium(II) acetate and copper(II) acetate and comment on any unusual features they have. [6 mks]

- c) Explain each of the following:
 - i) TiO₂ is white but TiCl₃ is violet

[4 mks]

ii) Physical and chemical properties of Zr and Hf are much more similar than the properties of Zr and Ti

[4 mks]

d) Write a balanced reaction equation to depict what happens when the pH of a solution containing [VO₄]³⁻ ions is gradually reduced.

[3 mks]

e) Write equations to show the reaction of Cr_2O_3 with sulfuric acid [4 mks]

Question Five

- a) Starting with [Rh(H₂O)₆] and chloride ion, Cl, suggest a method for preparing each of the following:
 - i) trans-[RhCl₂(H₂O)₄]⁺
 - ii) $mer-[RhCl_3(H_2O)_3]$
 - iii) trans-[RhCl4(H2O)2]

[7 mks]

b) [Fe(H₂O)₆]²⁺ has a peak which is slightly split around 1000 nm. By using the appropriate Tanabe-Sugano diagram, account for the likely origin of this absorption. Then account for the splitting of the absorption band

[8 mks]

c) Discuss, with examples (one for each), the difference between outer-sphere and inner-sphere mechanisms. State what is meant by a self-exchange mechanism.

[7 mks]

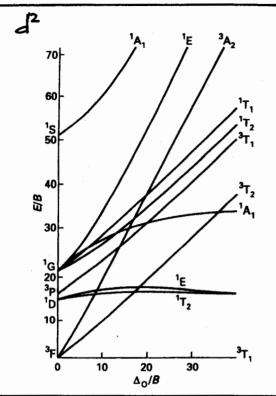
d) What reason can you suggest for the sequence Co>Rh>Ir in the rates of H_2O exchange of $[M(H_2O)_6]^{3+}$ ions?

[3 mks]

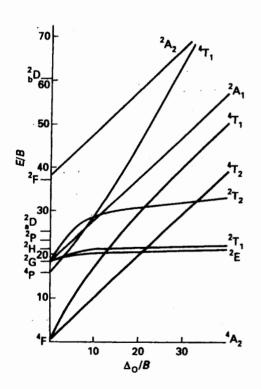
Question Six

- a) With the help of the flow-chart which is provided, determine point group for each of the following:
 - i) Cis-[PtCl₂BrI]²⁻
 - ii) SF₅Cl

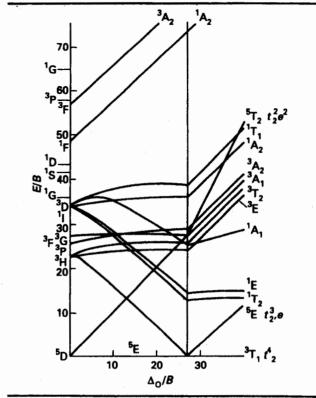
- iii) trans-Co(Br)(Cl)(NH₃)₄
- iv) d_{xy} orbital (whose shape is sketched below)

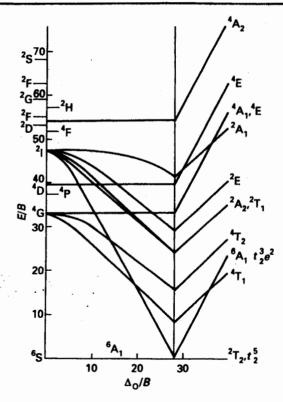


[12 mks]

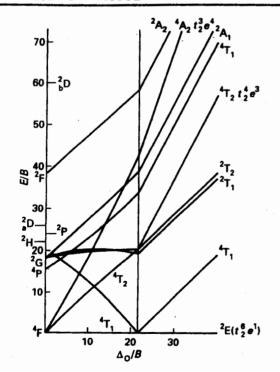

b) Determine the symmetries of CO <u>stretching modes</u> for the complex [M(CO)₅X] (which has C_{4v} point group). Which of the modes are IR active? Which ones are Raman active?

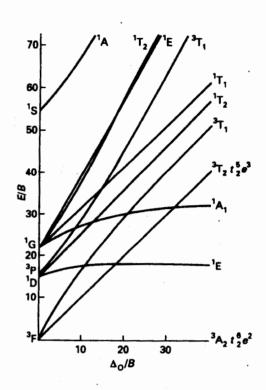
[13 mks]


1. d^2 with C = 4.42B


2. d^3 with C = 4.5B

3. d^4 with $C = 4.61B^4$


4. d with C = 4.477B


5. d^{4} with C = 4.8B

6. d' with C = 4.633B

7. d^4 with C = 4.709B

$C_{4v} = (4mm)$	E	$2C_4$ C_2 $2\sigma_{\rm v}$ $2\sigma_{\rm d}$	C_2	$2\sigma_{v}$	$2\sigma_{\rm d}$	h=8	
A_1	1	1	-	-	_	2	$x^2 + y^2, z^2$
A ₂			_	_	1	R_z	
В ₁	-	1	_	_	1		x^2-y^2
B ₂	-	1	_	1	, }		ষ্
III	2	0	-2	0	0	$(x, y) (R_x, R_y)$	(zx, yz)

						(294)	(272)	110 (273)	(266) 109	108 (269)	107 Bh (262)	§ 8 §	(262) 103	(261)	Ac 227.03	R.a 226.03	87 Fr 223.02	
86 Rn 222.03		209.98°	83 Bi 208.98	207:2	81 T1 204.38	200.59	79 Au 196.97	Pt 195.08	77 Ir 192.22	190,23	75 186.21	183.84	Ta 180.95	178.49	La 1	36 Ba 137.33	18.281 53	
34 Xe	53 I 126.90		51 SB 121.76	50 S n 118.71	49 In 114.82	112.41	47 A9 107. 8 7	Pd 106.42	102.91	101.07	7c 98.906.	%94 %94	2.9g.±	21. 21. 91.224	306.88	38 Sr.62	85.468	
36 83.86	35 Br 79.904	34 Se 78.96	33 A.S 74.922	32 Ge 72.81	31 Ga 69.723	30 Zn 65.39	29 Cu 63.546	28 Ni 58.693	27 Co 58.933	26 Fe 55.845	25 Mn 54.938	51.9%	23 V 50.942		4.956 21	40.078	39.098	
18 Ar 39.94	Ω Ω	16 S 32.066	15 P 30.974	14 Si 28.086	13 Al 26.982	12	11	10	9	œ	7	٥	<u>ب</u>	-	w	24.305	Na 22.990	
10 Ne 20.18	9 F 18.998	8 O 15.999	7 14.007	6 C 12.011	118:01 25 5											Be 9.0122	146.9 17.	
2 He	17	16	12	<u>=</u>	ធ										-	2	1.0079	
₩ `	_					•	ement	the El	Periodic Table of the Elements	lic Ta	Period						GROUP	

AAstinide series	+ Lenthanido series
90	58
Th	Ce
232.04*	140.12
90 91 9	59
Th Ba 1	Pr
12.04 231.04 238	140.91
20 2	2 Z 8
93	61
N p	Pm
237.05	146.92
94	62
Pu	Sm
239.05	150.36
95	63
Am	Eu
241.06	151.96
24.0° %	18738 CQ
97	65
Bk	Tb
249.08°	158.93
98	66
Cf	Dy
252.08*	162.50
99	67
E. 8	Ho
252.08*	164.93
100	68
Fm	Er
257.10*	167.26
101	69
Md	Tan
258.10	168.93
102	70
No	Yb
259.10*	173.04
103	71
Lr	Lu
262.11*	174.97

Atomic masses shown here are the 1993 IUPAC values with a maxium of five significant figures (T. B. Coplen et al., Incry. Chin. Acta 1994, 217, 217). An asterisk indicates the mass of a commonly known radioisotope. Numbers in parentheses are the mass numbers of the corresponding longer-lived isotope.