UNIVERSITY OF SWAZILAND #### SUPPLEMENTARY FINAL EXAMINATION ### **ACADEMIC YEAR 2008/2009** TITLE OF PAPER: **INORGANIC CHEMISTRY** COURSE NUMBER: C301 TIME ALLOWED: THREE (3) HOURS **INSTRUCTIONS:** THERE ARE SIX (6) QUESTIONS. **ANSWER ANY FOUR (4)** QUESTIONS. EACH QUESTION IS **WORTH 25 MARKS.** A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER. NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. #### **Question One** - a) Give the IUPAC name for each of the following: - i) $K_3[Co(NO_2)_6]$ - ii) $[Cr(en)_3][Cr(Ox)_3]$ - iii) $[Cl_3W(\mu-Cl)_3WCl_3](ClO_4)_3$ - iv) $W(CH_2CH_3)_6$ [6 mks] - b) Give the formula and draw the structure of each of the following: - i) Sodium pentacyanonitrosylferrate(II) dihydrate - ii) Potassium pentachloronitroosmate(IV) - iii) Tetraammineaquacobalt(III)-μ-cyanobromotetracyanocobaltate(III) [6 mks] - c) State the type of isomerism that may be exhibited by the following sixcoordinate complexes, and draw structures of the isomers: - i) $[Pt(en)_2Cl_2]Br_2$ - ii) Pd(bpy)(NCS)₂ - iii) Rh(acac)₃ [13 mks] #### **Question Two** a) A monomeric complex of cobalt gave the following result on analysis: | Species | Co | NH ₃ | Cl | SO ₄ ² - | H ₂ O | |---------|-------|-----------------|-------|--------------------------------|------------------| | %, by | 21.24 | 24.77 | 12.81 | 34.65 | ? | | mass | | · | | | | The compound is diamagnetic and contains no other groups or elements, except that water might be present. - i) Using the above data, calculate the formula of the compound - ii) Check if there is any water present. If water is present, what is the final formula of the compound? - iii) Sketch the structures of all possible isomers [8 mks] b) The value of μ_{eff} for $[\text{CoF}_6]^{3-}$ is 5.63 BM. Explain why this value does not agree with the value of magnetic moment calculated from the spin-only formula. - c) Explain why under the influence of an octahedral field, the energies of the d orbitals are raised or lowered. With respect to what are orbital energies raised or lowered? [7 mks] - d) What is the expected ordering of Δ_0 for $[Fe(OH_2)_6]^{2+}$, $[Fe(CN)_6]^{3-}$ and $[Fe(CN)_6]^{4-}$? Rationalize your answer. [4 mks] ## **Question Three** a) A reaction of trans-[Pt(PEt₃)₂(Ph)Cl] with thiourea, tu, in methanol follows a two-term rate law with $$k_{obs} = k_1 + k_2[tu]$$ Give a plausible mechanism for the reaction. Suggest how the values of k_1 and k_2 may be obtained. [8 mks] b) $[V(H_2O)_6]^{3^+}$ has absorption bands at 17800, 25700 and 34500 cm⁻¹. Using the Tanbe-Sugano diagram for a d² configuration, estimate values of Δ_0 and B for this complex. [17 mks] ### **Question Four** a) Complete and balance the following reactions: i) $$Cr + Cl_2 \longrightarrow$$ ii) $$Mo + Cl_2 \longrightarrow$$ iii) $$Cr + O_2$$ \longrightarrow iv) $$M_0 + O_2 \longrightarrow$$ [4 mks] b) Sketch the structures of chromium(II) acetate and copper(II) acetate and comment on any unusual features they have. [6 mks] - c) Explain each of the following: - i) TiO₂ is white but TiCl₃ is violet [4 mks] ii) Physical and chemical properties of Zr and Hf are much more similar than the properties of Zr and Ti [4 mks] d) Write a balanced reaction equation to depict what happens when the pH of a solution containing [VO₄]³⁻ ions is gradually reduced. [3 mks] e) Write equations to show the reaction of Cr_2O_3 with sulfuric acid [4 mks] #### **Question Five** - a) Starting with [Rh(H₂O)₆] and chloride ion, Cl, suggest a method for preparing each of the following: - i) trans-[RhCl₂(H₂O)₄]⁺ - ii) $mer-[RhCl_3(H_2O)_3]$ - iii) trans-[RhCl4(H2O)2] [7 mks] b) [Fe(H₂O)₆]²⁺ has a peak which is slightly split around 1000 nm. By using the appropriate Tanabe-Sugano diagram, account for the likely origin of this absorption. Then account for the splitting of the absorption band [8 mks] c) Discuss, with examples (one for each), the difference between outer-sphere and inner-sphere mechanisms. State what is meant by a self-exchange mechanism. [7 mks] d) What reason can you suggest for the sequence Co>Rh>Ir in the rates of H_2O exchange of $[M(H_2O)_6]^{3+}$ ions? [3 mks] # **Question Six** - a) With the help of the flow-chart which is provided, determine point group for each of the following: - i) Cis-[PtCl₂BrI]²⁻ - ii) SF₅Cl - iii) trans-Co(Br)(Cl)(NH₃)₄ - iv) d_{xy} orbital (whose shape is sketched below) [12 mks] b) Determine the symmetries of CO <u>stretching modes</u> for the complex [M(CO)₅X] (which has C_{4v} point group). Which of the modes are IR active? Which ones are Raman active? [13 mks] 1. d^2 with C = 4.42B 2. d^3 with C = 4.5B 3. d^4 with $C = 4.61B^4$ 4. d with C = 4.477B # 5. d^{4} with C = 4.8B ## 6. d' with C = 4.633B # 7. d^4 with C = 4.709B | $C_{4v} = (4mm)$ | E | $2C_4$ C_2 $2\sigma_{\rm v}$ $2\sigma_{\rm d}$ | C_2 | $2\sigma_{v}$ | $2\sigma_{\rm d}$ | h=8 | | |------------------|-------------|--|----------|---------------|-------------------|---------------------|------------------| | A_1 | 1 | 1 | - | - | _ | 2 | $x^2 + y^2, z^2$ | | A ₂ | | | _ | _ | 1 | R_z | | | В ₁ | - | 1 | _ | _ | 1 | | x^2-y^2 | | B ₂ | - | 1 | _ | 1 | ,
} | | ষ্ | | III | 2 | 0 | -2 | 0 | 0 | $(x, y) (R_x, R_y)$ | (zx, yz) | | | | | | | | (294) | (272) | 110
(273) | (266)
109 | 108
(269) | 107
Bh
(262) | § 8 § | (262)
103 | (261) | Ac
227.03 | R.a
226.03 | 87
Fr
223.02 | | |---------------------------|---------------------------|-------------------|----------------------------|----------------------------|---------------------------|--------------------------|------------------------------------|--------------------|--------------------------------|--------------------|---------------------------|------------|-------------------|----------------------|--------------|---------------------------|---------------------|--| | 86
Rn
222.03 | | 209.98° | 83
Bi
208.98 | 207:2 | 81
T1
204.38 | 200.59 | 79
Au
196.97 | Pt 195.08 | 77
Ir
192.22 | 190,23 | 75
186.21 | 183.84 | Ta
180.95 | 178.49 | La 1 | 36
Ba
137.33 | 18.281
53 | | | 34
Xe | 53
I
126.90 | | 51
SB
121.76 | 50
S n
118.71 | 49
In
114.82 | 112.41 | 47
A9
107. 8 7 | Pd 106.42 | 102.91 | 101.07 | 7c 98.906. | %94
%94 | 2.9g.± | 21.
21.
91.224 | 306.88 | 38
Sr.62 | 85.468 | | | 36
83.86 | 35
Br
79.904 | 34
Se
78.96 | 33
A.S
74.922 | 32
Ge
72.81 | 31
Ga
69.723 | 30
Zn
65.39 | 29
Cu
63.546 | 28
Ni
58.693 | 27
Co
58.933 | 26
Fe
55.845 | 25
Mn
54.938 | 51.9% | 23
V
50.942 | | 4.956
21 | 40.078 | 39.098 | | | 18
Ar
39.94 | Ω
Ω | 16
S
32.066 | 15
P
30.974 | 14
Si
28.086 | 13
Al
26.982 | 12 | 11 | 10 | 9 | œ | 7 | ٥ | <u>ب</u> | - | w | 24.305 | Na
22.990 | | | 10
Ne
20.18 | 9
F
18.998 | 8
O
15.999 | 7
14.007 | 6
C
12.011 | 118:01
25 5 | | | | | | | | | | | Be 9.0122 | 146.9
17. | | | 2
He | 17 | 16 | 12 | <u>=</u> | ធ | | | | | | | | | | - | 2 | 1.0079 | | | ₩ ` | _ | | | | | • | ement | the El | Periodic Table of the Elements | lic Ta | Period | | | | | | GROUP | | | AAstinide series | + Lenthanido
series | |------------------|------------------------| | 90 | 58 | | Th | Ce | | 232.04* | 140.12 | | 90 91 9 | 59 | | Th Ba 1 | Pr | | 12.04 231.04 238 | 140.91 | | 20 2 | 2 Z 8 | | 93 | 61 | | N p | Pm | | 237.05 | 146.92 | | 94 | 62 | | Pu | Sm | | 239.05 | 150.36 | | 95 | 63 | | Am | Eu | | 241.06 | 151.96 | | 24.0° % | 18738
CQ | | 97 | 65 | | Bk | Tb | | 249.08° | 158.93 | | 98 | 66 | | Cf | Dy | | 252.08* | 162.50 | | 99 | 67 | | E. 8 | Ho | | 252.08* | 164.93 | | 100 | 68 | | Fm | Er | | 257.10* | 167.26 | | 101 | 69 | | Md | Tan | | 258.10 | 168.93 | | 102 | 70 | | No | Yb | | 259.10* | 173.04 | | 103 | 71 | | Lr | Lu | | 262.11* | 174.97 | Atomic masses shown here are the 1993 IUPAC values with a maxium of five significant figures (T. B. Coplen et al., Incry. Chin. Acta 1994, 217, 217). An asterisk indicates the mass of a commonly known radioisotope. Numbers in parentheses are the mass numbers of the corresponding longer-lived isotope.