UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION

JULY 2009

TITLE OF PAPER

INTRODUCTION TO ANALYTICAL

CHEMISTRY

COURSE NUMBER

C 204

:

TIME

3 HOURS

Important information:

1. Each question is worth 25 marks

2. Answer any four (4) questions in this paper.

3. Candidates who show ALL procedural

calculations will attract additional marks.

4. Diagrams must be large and clearly labelled

accordingly.

5. This paper contains an appendix of chemical

constants and useful data.

6. This paper contains 10 printed pages, including

the cover and appendix.

7. Special materials: 3 graph papers.

You are not supposed to open this paper until permission has been granted by the chief invigilator.

Ouestion 1 [25]

a)	Define the	following	terms as	applied in	analytical	chemistry;

i) Qualitative analysis

ii) Replicate measurement

iii) Population meanv) Data validation

iv) Analytical interference

b) Give three of the most important sources of determinate error in chemical analysis.

[3]

[5]

c) The following results were obtained for the analysis of aspirin in 100 g aspirin tablets:

Determination	% Aspirin (w/w)
1	94.25
2	97.63
3	92.33
4	91.55
5	88.45

Calculate the following parameters, using the data from the table:

i)	Mean	[2]
ii)	Median	[2]
iii)	Standard deviation	[4]
iv)	Variance	[2]

- d) The percentage carbohydrate content of a glycoprotein is determined to be 12.6, 11.9, 13.0, 12.7 and 12.5, in replicate analyses.
 - i) Find the 50 % and 95 % confidence intervals for the carbohydrate content.

[4]

ii) Comment on the implications of your results to the true mean.

[3]

Question 2 [25]

- a) Calculate the formula weights of the following compounds and round off to the correct significant figures.
 - i) $Ca_3(PO_4)_2$
- ii) (NH₄)₂CO₃
- iii) CH₃COOH

[3]

- b) Give the two scenarios when it is appropriate to apply the Student's t-test. In each case, give the relevant equation. [6]
- c) You are developing a procedure for determining traces of Cu in biological samples. A standard reference material (SRM) is taken through the analysis to validate your method, and the analysis is replicated 5 times. The mean of the data is obtained at 10.8 ppm with a standard deviation of \pm 0. 7ppm. The SRM has a value of 11.7 ppm. Does your method give a statistically correct value at the 95 % confidence interval?

- d) Applying the Principles of Von Weimarn equation, state the steps you would take to minimise relative super-saturation and thereby enhance or promote the formation of a good analytical precipitate. [4]
- e) In order to standardise a HCl solution, it was titrated with 0.1165 g of a primary standard Na₂CO₃ to a methyl red end-point by boiling the carbonate solution near the end-point to remove CO₂. Calculate the molarity of the acid if 21.44 mL acid was required for the titration. [5]

Question 3 [25]

Riboflavin (Vitamin B2) was determined in a cereal sample by measuring its fluorescence intensity in 5 % acetic acid solution. A calibration curve was prepared by measuring the fluorescence intensity of a series of standards of increasing concentrations. The following data were obtained.

Standard	1	2	3	4	5	Sample
(μg/mL)	0.000	0.100	0.200	0.400	0.800	x
Intensity	0.0	5.8	12.2	22.3	43.3	15.4

- a) Use the method of least squares to obtain the best straight line for the calibration curve and to calculate the concentration of riboflavin in the sample solution. [12]
- b) Calculate the correlation coefficient for the data.

[4]

- c) What are the three most important features of a good analytical precipitate in gravimetry?
- d) An ore was analysed for the Mn content by converting the Mn to Mn₃O₄ and weighing it. If a 1.52 g sample yielded Mn₃O₄ weighing 0.126 g, what is the percent Mn in the sample? [6]

Question 4 [25]

- a) The iron content in a blended bulk ore material is about 5 % (wt/wt), and the relative standard deviation of sampling, Ss, is 0.021. How many samples should be taken in order to obtain a relative standard deviation, R, of 0.016 in the results at the 95% confidence level (i.e. the standard deviation, Sx, for the 5% iron content is 0.08 % (wt/wt)? [5]
- b) Explain the role of a blank titration in the determination of chlorine in water samples.
 [2]
- c) List any four (4) desirable properties of a primary standard, and name one primary standard which is commonly used in chlorine determinations. [5]

d) A 25.00 mL 0.100 M NaCl solution was titrated with 0.500M AgNO ₃ . CalcupAg value at the following stages of the titration, given that for AgCl, $K_{sp} = 1.8 \text{ x}$	
i) After the addition of 0.5 mL ii) At the equivalence point iii) At 5 mL past the equivalence point	[6]
iv) Plot the titration curve	[2]
e) In the Volhard titration method,	
 i) state the reagents needed to identify the end point ii) explain, using chemical equations the colour changes leading to the end iii) give one limitation of this method. 	[2] point. [2] [1]
Ouestion 5 [25] a) A 20mL solution of 0.100 M NH ₃ is titrated with 0.200 M HCl. i) Calculate the pH of the ammonia solution at the following volumes added.	of HCl
0 mL 1 mL 9.0 mL 9.99 mL 10.01 mL 11 mL.	10 mL [7]
ii) Plot the resulting titration curve and indicate on it the value of K_b NH ₃ /NH ₄ system.	for the [4]
iii) Suggest a suitable indicator for the titration.	[2]
b) Distinguish between the following terms; i) Sample and population mean ii) End-point and equivalence point	
iii) Occlusion and Surface adsorption	[6]
c) Using equations as far as possible, briefly explain why pH is an important pathat needs to be controlled in Mohr titration.	rameter [4]
d) Explain the role of a primary standard.	[2]

Ouestion 6 [2 a) In precipita		ns,				
i) expl	ain the role	of a primary st	andard. ies of the substa	ance listed in	(i) above.	[2] [3]
b) In the labo	•	rmination of c	hlorine by the	Fajan's titra	ation in sam	ples of a
i) Nam ii) Use iii) Us titratio	ne a commo e diagrams to ing the diagons.	o explain how the grams in (ii) about	dicator in these the indicator na ove, explain the red in these titra	med in (i) ab e role of a pl	I 10 buffer i	[2]
c) The follow	ing data was	s obtained from	the analysis of	a sample, in	ppm;	
	26	25	24	26	15	
i)	Should th		be considered	part of the	data at the	ne 95 % [4]
ii)	Using anot following:	•	e values obtain	ed for the sar	ne analysis y	
	33	26	25	35	33	
	Do the two	methods give	the same result	at the 95 %	confidence le	evel? [5]
iii)		on the precision on the precision of true' value is	on of the second 32 ppm.	d method at	the 95 % co	onfidence [2]

Table .1(A)
Values of t for v Degrees of Freedom for Various Confidence levels

		Confidence Lev	rel	
V	90%	95%	99%	. 99.5%
1 .	6.314	12.706	63.657	127.32
2	2.920	4.303	9,925	14.089
3	2.353	3.182	5.841	7.453
4	2.132	2.776 .	4.604	5.598
5	2.015	2.571	4.032	4.773
6	1.943	2.447	3.707	4.317
7	1.895	2.365	3.500	4.029
8	1.860	2.306	3.355	3.832
9	1.833	2.262	3.250	, 3.6 9 0
10	1.812	2.228	3.169	3.581
15	1.753	· 2.131	2.947	3.252
20	1.725	2.086	2.845	3.153
25	1.708	2.060	2.787	3.078
80	1.645	1.960	2.576	2.807

 $^{^{}a}v = N - 1 =$ degrees of freedom.

Table 1(B) Values of t for Various Levels of Probability

Factor for Confidence Interval

Degrees of					
Freedom	80%	90%	95%	99%	99.9%
1 .	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.30	9.92	31.6
3 .	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.60	8.60
5	1.48	2.02	2.57	4.03	6.86
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.90	2.36	3.50	5.40
8	1.40	1.86	2.3 İ	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
11 -	1.36	1.80	2.20	3.11	4.44
12	1.36	1.78	2.18	3.06	4.32
13	1.35	1.77	2.16	3.01	4.22
14	1.34	4 1.76	2.14	2.98	4.14
x`_	1.29	1.64	1.96	2.58	3.29

TABLE 2

Values of F at the 95% Confidence Level

	$v_1 = 2$	3	4	5	6	7	8	9	10	15	20	30
$v_2 = 2$	19.0	19.2	19.2	19.3	19.3	19.4	19.4	19.4	19.4	19.4	19.4	19.5
3	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.70	8.66	8.62
4	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.86	5.80	5.75
5	5.79	5.41	5. i9	5.05	4.95	4.88	4.82	4.77	4.74	4.62	4.56	4.50
6	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	3.94	3.87	3.81
7	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.51	3.44	3.38
8	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.22	3.15	3.0
9	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.01	2.94	2.8
10	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.85	2.77	2.7
15	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.40	2.33	2.2
20	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.20	2.12	2.0
30	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.01	1.93	1.8

TABLE 3
Rejection Quotient, Q, at Different Confidence Limits*

No. of		Confidence leve	1
Observations	Q90	Q95	Q99
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
S	0.468	0.526	0.634
9	0.437	0.493	0.598
10 .	0.412	0.466	0.568
15	0.338	0.384	0.475
20	0.300	0.342	0.425
25	0.277	0.317	0.393
30	0.260	0.298	0.372

^{*}Adapted from D. B. Rorabacher, Anal.. Chcm. 63 (1991) 139.

PERIODIC TABLE OF ELEMENTS

Atomic mass	1 2 3 4 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Atomic mass	3 4 5 6 IIII IVI VII VIII
Atomic mass	4 5 6 IVI3 VI3 VII3
Su.942 51.996 54.938 55.847 58.933 58.69 63.546 65.39	5 6 8 VIII
Atomic mass	VIII 6
Atomic mass	
Atomic mass — Symbol — Atomic No. — Atomic N	
Atomic mass — Symbol — Atomic No. — Atomic N	7 VIIII
Atomic mass — Symbol — Atomic No. — Atomic N	8
Atomic mass — Symbol — Atomic No. — Atomic N	GROUPS 9 VIIIII
mic mass	S 10
-	≡=
-10.811 -1	12
	13
12.011 C C 6 28.086 Si 14 72.61 Ge 32 118.71 Sn 50 207.2 Pb 82	IVA
14.007 N 7 30.974 P 15 74.922 As 33 121.75 Sb 51 208.98 Bi 83	٧٨ اع
15.999 O O 8 32.06 S 16 78.96 Se 34 127.60 Tc 52 (209) Po 84	VIV 16
18.998 F 9 35.453 C! 17 79.904 Br 35 126.90 [210] At 85	17 VIIA
11c 2 20.180 Ne 10 39.948 Ar 18 83.80 Kr 36 131.29 Xe 54 (222) Rn 86	

** Actinide Series

232.04 Th 90

238.03

237.05

(244)

(243)

(247)

(247) Bk 97

(25I) CI 98

. (252) Es 99

(257) F₁₁₁

(258) Md

(259) No 102

(260) Lr 103

() indicates the mass number of the isotope with the longest half-life.