UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2008/2009

TITLE OF PAPER

Introductory Chemistry II

COURSE CODE

C112

TIME ALLOWED

Three (3) Hours.

INSTRUCTIONS

There are Six questions. Each question is worth

25 marks. Answer any Four (4) Questions.

Non-programmable electronic calculators may

be used.

DO NOT OPEN THIS QUESTION PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25 marks)

(a)		
(i)	Give a summary of the statement that described the Kinetic molecular theory	
	of ideal gases.	[4]
(ii)	How does the Kinetic molecular theory explain Dalton's law of partial pressure	s?
		[3]
(b)	From the ideal gas equation, obtain an expression for the molar mass of a gas M	in terms
	of its mass, m, pressure, P, volume, V, temperature, T and the gas constant, R.	[3]
(c)		
(i)	Differentiate between 'diffusion' and 'effusion' of gas molecules.	[2]
(ii)	Sate Graham's law and give its mathematical expression. Define all the parame	ters
	in the expression.	[4]
(d)	At 100°C and 1.0 atm, a 0.124g of a volatile compound evaporates to give 45.3c	m ³ of
	vapour. Evaluate the molar mass, M, of this substance.	[4]
Ques	tion 2 (25 marks)	[5]
(a)		
(i)	Differentiate between the initial rate and instantaneous rate of a reaction.	
(-)	Show how they can evaluated for a given reaction.	[8]
(ii)	For a given real or hypothetical first order reaction, show graphically the variation	
()	of initial rate with initial concentration.	[3]
(b)	The reaction:	-
	$CS_2 \rightarrow CS + S$	
	is first order with $k = 10^{-7} s^{-1}$ at 1000 °C	
(i)	Calculate the half-life for this reaction.	[3]
` '	How many days will it take a 2.00g sample of CS ₂ to decompose and reduce	• •
()	to 0.75g of CS ₂ ?	[4]
(iii)	Referring to (ii), how many grams of CS would be formed after this length of tir	
(iv)	How much of the 2.00g CS ₂ would remain after 45.0 days?	[4]
, /		• •

uestion 3 (25 marks)

Define or explain the term 'thermochemical standard state of a substance'. Give two (a) examples of substances in their standard states. [3] **(b)** (i) Define the term 'standard molar enthalpy of formation', ΔH^O_{.f}: Explain the significance of 'o' in the superscript. [3] (ii) Write the thermochemical equations that give values of the standard enthalpies of formation of Al₂O_{3(s)} and C₂H₅OH₍₁₎. [4] (iii) 10.0g of lithium was burnt in excess oxygen at constant atmosphric pressure to form Li₂O. The reaction mixture was then brought back to 25°C. In the process, 420KJ of heat was given off. Calculate the standard molar enthalpy of formation of Li₂O. (c) Sate Hess' Law of heat summation. (i) [1]Given the following equations and their ΔH^{O} values thus: $\Delta H(KJ)$ $C_2H_5OH_{(1)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(1)}$ -1367.0 $C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(1)}$ -1411.0Calculate the heat-of reaction at 298K for the following reaction. $C_2H_{4(g)} + H_2O_{(1)} \rightarrow C_2H_5OH_{(1)}$ [3] (iii) Given that the standard enthalpy of formation of SO_{2(g)} is -296.83 KJ/mol while that of SO_{3(g)} is -395.72 KJ/mol, calculate the enthalpy of reaction of the oxidation of 5.0g of SO₂ in the reaction: $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$ [6]

Question 4 (25 marks)

- (a) The household cleaning reagent solution has a hydroxide concentration of 0.0032M.

 Calculate the [H₃O⁺], pH and pOH for this solution. [6]
- (b) HA is a newly discovered monoprotic acid. A 0.20M solution of this acid is found to have a ph of 3.22.
- (i) What is the K_e value for this acid?
- (ii) Evaluate the K_b for its conjugate base. [3]
- (c) An aqueous ammonia solution has $K_b = 1.8 \times 10^{-5}$.

(d)

- (i) For a diprotic acid, state the expression that relates the K_a, (the overall ionization constant) K_{a1} and K_{a2} (the stepwise ionization constant s). [1]
- (ii) Calcualte the pH of a 1.0×10^{-2} M H₂SO_{3(aq)} at 25°C for which K_{e1} = 1.5×10^{-2} and K_{e2} = 1.2×10^{-7} . [5]

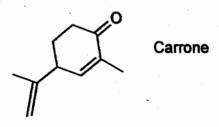
Question 5 (25 marks)

- (a) Give the ground state electron configuration for each of the following atoms:
 - (i) Nitrogen

[1½ marks]

(ii) Oxygen

[1½ marks]


(iii) Silicon

[2 marks]

(iv) Sulphur

[2 marks]

- (b) (i) What is the importance of knowledge of electron configuration of an atom? [3 marks]
 - (ii) Phosphine, an organic compound made up of hydrogen and phoisphorus has atomic connectivity PH. How many hydrogen atoms does phosphorus bond to in forming phosphine? [2 marks]
 - (iii) Draw a three dimensional structure for a molecule of chloroform, using solid, wedge, and dashed lines to indicate its tetrahedral geometry. [4 marks]
- (c) Carrone, a substance responsible for the odour of spearmint, has the following structure:

- (i) Indicate in the structure, how many hydrogen atoms are bonded to each carbon atom. [5 marks]
- (ii) Give the molecular formular of carrone.

[4 marks]

Question 6 (25 marks)

(a) (i) Commonly used in biology as a tissue preservative, formaldehyde, CH₂O, contains a carbon oxygen double bond. Draw the line-bond structure of formaldehyde, and indicate the hybridization of the carbon and oxygen atoms.

[2 marks]

- (ii) Draw the following structures and fill in any non bonding valence electrons that are missing.
 - (1) H₃C / S / CH₃

Dimethyl disulphide

[2 marks]

[2 marks]

(3) O C C C C

[2 marks]

- (b) (i) Use the δ^+/δ^- convention to show the direction of expected polarity for each of the bonds indicated. [3 marks]
 - (1) H₃C-Cl
- (2) H₃C-NH₂
- (3) H_2N-H
- (4) H₃C-SH
- (5) H₃C-MgBr
- (6) H₃C-F
- (ii) Draw the resonance forms for the acetate ion CH₃COO⁻. [1 mark]
- (iii) Explain what these resonance structures (forms) predict for:
 - (1) The carbon-oxygen bond lengths in the acetate ion.

[2 marks]

(2) The electrical charge on the oxygen atoms.

[2 marks]

- (c) Write the dot structure, the dash structure, and the bond-line (or the skeletal) structure for each of the following molecules:
 - (i) CH₃CH₂NH₂

[3 marks].

(ii) CH₃SCH₃

[3 marks]

(iii) (CH₃)₂CHCH₂CH₂OH

[3 marks]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	.	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
	•	8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$h = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass	• .	
electron	$\mathbf{m}_{\mathbf{c}}$	9.109 39 X 10 ⁻³¹ Kg
proton	$\mathbf{m}_{\mathbf{p}}$	1.672 62 X 10 ⁻²⁷ Kg
neutron	$\mathbf{m_n}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\bullet}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^2 \text{ m}^{-1}$
	•	$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = {\rm ch/2m}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e c^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		:
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
•		

Conversion factors

1 cal = 1 eV =		4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J			e	=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹					
Prefixes	femto pico	nano	micro 10-6	milli	centi	deci			G giga 10°			

PERIODIC TABLE OF ELEMENTS

*	*L		J		2		Ŋ			4			(J.			2	•		-		PERIODS		
**Actinide Series	*Lanthanide Scries	87	223 F-	55	Cs	37	₹	85.468	19	~	39.098	=	- Z	22.990	,	۲ د	6.941	-	=	.00%	>		
Series	e Series	88	226.03 Ra	56	137.33 Ba	38	Sr	87.62	20	င္အ	40.078	1,	. M	24.305		200	9.012			-	=	2	
		89	(227) ** A.c	57	*La	39	×	88.906	21	Sc	44.956					•					IIIB	w	
58 232.04 Th 90	140.12 Ce	5 2	(26I) Df	72	178.49 Hf	40	Zr	91.224	22	H	47.88				ini elfjy Rogje,za°	in Sin		the state of the	اِسامين		IVB	#### 4	5. 3. 25 /
59 231.04 Pa 91	140.91 Pr	105	(262)	73	180.95	4	Ž	92.906	23	<	50.942		•					. •			ΨV	5	
	144.24 Nd	106	(263)	74	W. 83.85	42	Mo	95.94	24	Ç	51.996		TRAN	•							VIB	6	
61 237.05 Np 93	(145) Pm	107	(262)	75.	186.21	43	īc	98.907	25	M _n	54.938		TRANSITION ELEMENTS								VIIB	7	
62 (244) Pu 94	150.36 Sm	801 Office	(265)	78	2.0%	44	Ru	101:07	26	Гe	55.847		N ELEM		•				•	•		8	6
63 (243) Am 95	151.96 Em	One	(266)	77	192:22	45	Rh	1.02,9.1	27	င္ပ	58.933		ENTS							•	VIIIB	9	GROUPS
64 Cm 96	157.25	- Cun	(267)	78 78	195.08	46	Pd	106.42	28	Z	58.69											10	0 1
65 (247) Bk	15 8. 93			79	196.97	47	AR	107.87	29	υ C	63.546				Aton	Syı	Atom				₽	=	
66 CI (251)	162.50		. [208 DI	200.59	48	Cd	112.41	30	Zn	65.39 .	••	٠.	•	Atomic No.	Symbol -	Atomic mass -	•			B	12	
67 (252) Es 99	164.93		9	21	204.38	49	Ħ	114.82	<u>u</u>	ဌာ	69.723	ฉ	A	26.982	5	→ B	10.811					3	
68 (257) Fm 100	167.26		7.0	3 Z	207.2	0S	Sn	118.71	32	G.	77 61	7	S	28.086	6	C	12.011				₹:	14	•
69 (258) Md	168.93		9	3 E	208.98	51	dS	121.75	ដ	Àg	74 977	15	۳	30.974	7	z	14.007				%	15	٠.
(259) No	173.04	APPENO	2	Po	(209)	S2 ?	Ţ	127.60	بر 4	S 5	78 96	5	S	32.06	CO	0	15.999				VI.	5	
(260) Lr J03	174.97	•	S	. At	(210)	ა ა	I .	126.90	35	7 Y	70 004	17	Ω	35.453	9	Ά	18.998				VII.	17	
•			8	Rn	(222)	¥ }	X	171 20	۲ <u>۲</u>	X 2	0.0	<u>~</u>	۸r	39.948	5	ķ	20.180	ر د		4.003	۷ ۲	8	

() indicates the mass number of the isotope with the longest half-life.