UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2007/2008

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS.

EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a)	Deter	mine the specified quantity on the basis of the 18-electron rule:	
	(i)	The number of CO ligands in $[(\eta^5-C_5H_5)W(CO)_x]_2$ having W-V bond.	V single
	(ii)	The identity of the first-row transition metal in $(\eta^4-C_8H_8)M(CO)_3$.	[1]
	(iii)	The expected charge on [(CO) ₃ Ni-Co(CO) ₃] ² .	[1]
(b)		th the structures of the following compounds, given that the centres obey the 18-electron rule.	al metal
	(i)	$(\eta^3-C_3H_5)Mn(CO)_4$	[2]
	(ii)	trans-bis[tetracarbonyl(triphenylphosphine)manganese(0)]	[2]
(c)	_	ain with necessary diagrams the bonding in CO to transitional meta-	al atoms
	with	emphasis on the σ -donor and π^* -acceptor functions of the ligand.	[4]
(d)	Predi	ct reasonable products for the following reactions:	
	(i)	$(\eta^4-C_6H_6)Fe(CO)_3 + PPh_3 \rightarrow$	[2]
	(ii)	$Cr(CO)_6 + CH_2 = CH - CH = CH_2 \rightarrow$	[2]
	(iii)	$Co(CO)_3(NO) + PPh_3 \rightarrow$	[2]
	(iv)	$Mo(CO)_6 + (CH_3)_2PCH_2CH_2P(Ph)CH_2CH_2P(CH_3)_2 \rightarrow$	[2]
	(v)	$H_3C-Mn(CO)_5 + SO_2 \rightarrow \text{(no gases are evolved)}$	[2]
(e)		each of the following sets, which complex would be expected to lest C-O stretching frequency? Explain.	have the
	(i)	Fe(CO) ₄ (PF ₃), Fe(CO) ₄ (PCl ₃), Fe(CO) ₄ (PMe ₃)	[2]
	(ii)		[2]

QUESTION TWO

(a)		e basis of cluster va	lence electron	count, predic	et the structure	es of the
	(i) (ii)	Fe ₅ C(CO) ₁₅ Ni ₅ Os(CO) ₁₄				[2] [2]
(b)	Based replace	on isolobal analogie	s, choose the	organometalli	c fragments th	nat might
	(i) (ii) (iii)	CH ₂ ⁺ Fe(CC CH ⁻ Ni(CC	9) ₄ , Mn(CO) _{5,} or 9) ₃ , Co(CO) ₃ , or H ₅)Co(CO), Mi	Mn(CO) ₄	(CO) ₆	[1] [1] [1]
(c)	Use W (i) (ii) (iii)	rade's rules to predict to Ru ₆ C(CO) ₁₇ [Rh ₇ (CO) _{16]} ³⁻ Fe ₄ C(CO) ₁₃	he structures of	the following	3:	[2] [2] [2]
(d)	Consid (i) (ii) (iii)	ler the polynuclear car Write down the equat From the application this molecule. Compare the reacti Os ₃ (CO) ₁₂ .	ion for the form of the 18-elect	nation of this ron rule, com	species. ment on the st	[2]
(e)		nt for the observation of the ion [Co(CO	_	single carbo	onyl stretching	band is
(f)	(i) With	ler the following speci NiNO (ii) which of these species valence electrons are c	(η ⁵ -C ₅ H ₅)Ni are CO, Co(Co	(iii) Ο) ₂ and (η ⁶ -C	BF C ₆ H ₆)Co isoeled	ctronic so [3]
QUE	STIO	N THREE				
(a)	(i) (ii) (iii)	What is an "oxidative What are the requirem What is the reverse complex that favour to	nent(s) for such reaction called	a reaction to	example. occur? ee requirement	[2] [2] ts on the [4]
(b)	(i) (ii) (iii)	Propose a mechanism R-CH=CH ₂ + Give electron counts catalytic cycle for the Kinetic studies indi enhanced by an increa pressure. How is the observations?	$CO + H_2 + G$ for all the spectre reaction shown cate that the use in H_2 pressure	$Co_2(CO)_8 \rightarrow cies postulate in (i) above. hydroformyl re and inhibit$	ed to be involved ation reaction reaction	ed in the [4] rate is

QUESTION FOUR

(a)	Discus	s the steady decrease in ionic size of the Ln3+ ions across the period	l.[5]
(b)	(i)	Why are the colours of Ln ³⁺ ions less intense than those of the transition metal ions?	first-row [3]
	(ii)	Which Ln ³⁺ ions would you expect to show the same colour as (1) Eu ³⁺ (2) Pr ³⁺ (3) Dy ³⁺	[3]
	(iii)	Explain. Why are Eu ²⁺ and Yb ²⁺ somewhat more stable with respect to or than other Ln ²⁺ cations?	[2] exidation [3]
(c)	(i) (ii)	Determine the number of unpaired electrons in Er ³⁺ . Derive the ground state term symbol for Er ³⁺ , and calculate its moment.	[1] nagnetic [6]
	(iii)	Write the symbols of two lanthanide metal ions whose magnetic recan be calculated by the spin-only formula.	
QUE	STIO	N FIVE	
(a)	Predict	t the products of the following reactions of interhalogens:	
	(i)	$IF_5 + CsF \rightarrow$	[1]
	(ii)	$ClF_3 + H_2O \rightarrow$	[1]
	(iii)	$BrF_5 + F_2 \rightarrow$	[1]
(b)		ructure of I_3^- is highly sensitive to the identity of the counter-ion. Leture of I_3^- in combination with	Describe
	(i)	$[N(CH_3)_4]^+$	[2]
	(ii)	Cs ⁺	[2]
(c)		the self-ionisation reaction for ICl and predict the structure for the bund formed.	anionic [3]
(d)		st an equation for the preparation of each of the following spet the structure of each of them.	cies and
	(i)	[ICl ₄] (ii) [BrICl]	[6]
(e)	(i) (ii)	Give <u>two</u> ways used to prepare actinide metals from actinide salts. State the <u>two</u> factors on which the general methods for the prepare synthetic actinides depend.	ration of [2]
	(iii)	Using the reactor irradiation method, write down a sequence of reactions that will produce $\begin{array}{c} 237 \text{ Np} \\ 93 \end{array}$ from $\begin{array}{c} 235 \text{U} \\ 92 \end{array}$	f nuclear [3]

QUESTION SIX

(a)	(i)	For each of the following elements, identify <u>one</u> significant biological processes:	role in
		(1) Mg	[1]
		(2) Co	[1]
		(3) K	įίj
	(ii)	Why are d metals such as Mn, Fe, Co, and Cu used in redox en	zymes in
		preference to Zn, Ga, and Ca?	[1]
	(iii)	Metal ions in animals are often coordinated by nitrogen dono	r atoms.
		Give two examples of Nature's nitrogen ligands.	[2]
(b)	Briefl	y discuss CO poisoning.	[3]
(c)	Using	the most appropriate acid-base theory, identify the acids and	bases in
	the fo	llowing reactions:	
	(i)	$SiO_2 + Na_2O \rightarrow Na_2SiO_3$	[2]
	(ii)	$Cl_3PO + Cl^- \rightarrow Cl_4PO^-$	[2]
	(iii)	$BF_3 + 2ClF \rightarrow Cl_2F^+ + BF_4^-$	[2]
(d)	(i)	Name three properties that determine the utility of a solvent.	[3]
	(ii)	Using hard-soft concepts, which of the following reactions are pre	
		have an equilibrium constant greater than 1? Assume gas-phydrocarbon solution and 25 °C.	phase or
		(1) R3PBBr3 + R3NBF3 + R3PBF3 + R3NBBr3	[2]
		(2) CH₃HgI + HCl ≒ CH₃HgCl + HI	[2]
	(iii)	Account for the trend in acidity:	
		$[Fe(H_2O)_6]^{2+} < [Fe(H_2O)_6]^{3+} < [Al(H_2O)_6]^{3+}$	[3]

PERIODIC TABLE OF ELEMENTS

9	2	
2	₹	
S	2	
	3	
ď	Ď	

7	6	U I	4	3	2	-	PERIODS	
223 Fr 87	132.91 Cs 55	85.468 Rb 37	39.098 K 19	22.990 Na 11	6.941 Li 3	1.00 8 H 1	IA	1
226.03 Ra 88	137.33 Ba 56	87.62 Sr 38	40.078 Ca 20	24.305 Mg 12	9.012 Be 4		IIA	2
(227) *** Ac 89	138.91 * La 57	88.906 Y 39	44.956 Sc 21				IIIB	ω
(261) Rf 104	178.49 Hf 72	91.224 Zr 40	47.88 Ti 22			:	IVB	4
(262) Ha 105	180.95 Ta 73	92.906 Nb 41	50.942 V .23				۷В	5
(263) Unh 106	183.85 W 74	95.94 Mo 42	51.996 Cr 24	TRAN			VIB	6
(262) Uns 107	186.21 Re 75	98.907 Tc 43	54.938 Mn 25	TRANSITION ELEMENTS			VIIB	7
(265) Uno 108	190.2 Os 76	101.07 Ru 44	55.847 Fe 26	ELEM				8
(266) Une 109	192.22 Ir 77	102.91 Rh	58.933 Co 27	ENTS			VIIIB	9
(267) Uun 110	195.08 Pt 78	106.42 Pd 46	58.69 N. 69					10
	196.97 Au 79	107.87 Ag 47	63.546 Cu 29		Atomic mass Symbol Atomic No.		B	11
	200.59 Hg 80	112.41 Cd 48	65.39 Zn 30				IIB	12
	204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 Al 13	10.811 5		IIIA	13
	207.2 Pb 82	118.71 Sn 50	72.61 Ge 32	28.086 Si 14	12.011 C 6		IVA	14
	208.98 Bi 83	121.75 Sb 51	74.922 As 33	30.974 P 15	14.007 N 7		VA	15
	(209) Po 84	127.60 Te 52	78.96 Se 34	32.06 S 16	15.999 O 8		VIA	16
	(210) At 85	126.90 I 53	79.904 Br 35	35.453 Cl 17	18.998 F 9		VIIA	17
	(222) Rn 86	Xe 54	83.80 Kr 36	39.948 Ar 18	Ne 10	4.003 He 2	VIIIA	18

*Lanthan

**Actini

103	102	101	100	99	98	97	96	95	94	93		91	90	
Ļ	Z	Md	Fm	Es	Ç	Bk	Cm	Am	Pu	Np	d	Pa	Th	
(260)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)	(244)	237.05	$\neg \neg$	231.04	232.04	nide Series
71	70	69	68	67	66	65	64	63	62	61	60		58	
Lu	Υb	Tm	Đ	Ho	Dy	ďľ	ଜୁ	Eu	Sm	Pm	Nd	Pr	င္ပ	mide Series
174.97	173.04	168.93	167.26	164.93	162,50	158.93	157.25	151.96	150.36	(145)	144.24		140.12	

() indicates the mass number of the isotope with the longest half-life.