UNIVERSITY OF SWAZILAND

FINAL EXAMINATION

ACADEMIC YEAR 2007/2008

TITLE OF PAPER:

ADVANCED

CHEMISTRY

INORGANIC

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS.

ANSWER ANY FOUR (4) QUESTIONS. EACH OUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE AND OTHER USEFUL DATA HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a)		e the specified quantity: ne metal-metal bond order consistent with the 18-electron	rule for [(n ⁵ -
		$H_5)Mo(CO)_2]_2^{2-}$	[1]
		ne identity of the first row-transition metal in $[(\eta^5-C_5H_5)M(CC)]$ ngle M-M bond), an 18-electron molecule.	[1] (assume a
	(iii) T ru	he expected charge on $[(\eta^5-C_5H_5)Fe(CO)_3]^z$ on the basis of the	he 18-electron [1]
(b)	(i)	Is [Mo(CO) ₇] likely to be stable?	[2]
` '	(ii)	What is the electron count for and oxidation number of p	
		anion of Zeise's salt, [PtCl ₃ (CH ₂ =CH ₂)] ⁻ ?	[2]
(c)	Identi	fy the following reactions by type and predict the products:	
	(i)	$Re_2(CO)_{10} + Na/Hg \rightarrow$	[2]
	(ii)	$Rh(PPh_3)_3Br + Cl_2 \rightarrow$	[2]
(d)	(i)	Suggest a sequence of reactions for the preparation of Fe given iron metal, CO, diphos (Ph ₂ P-CH ₂ -CH ₂ -PPh ₂), and ot your choice.	
	(ii)	Propose a synthesis for HMn(CO) ₅ , starting with Mn ₂ (CO) ₁ of Mn and other reagents of your choice.	
(e)	(i)	Which of the two isoelectronic compounds Cr(CO) ₆ and have the higher CO stretching frequency?	[V(CO) ₆] ⁻ will [2]
	(ii)	Which of the two chromium compounds [Cr(CO [Cr(CO) ₅ (PPh ₃)] will have the lower CO frequency? Which shorter M-C bond?)5(PEt3)] and

QUESTION TWO

- (a) The complex [Cr(CO)₄(PPh₃)₂] has one very strong IR absorption band at 1889 cm⁻¹ in the CO stretching region. What is the probable structure of the compound? [4]
- (b) Give organic fragments isolobal with each of the following:
 - (i) $(\eta^5-C_5H_5)Ni$
- (ii) $(\eta^6 C_6 H_6) Cr(CO)_2$
- (iii) [Fe(CO)₂(PPh₃)]

[3]

- (c) Use Wade's rules to predict the structures of the following:
 - (i) B_5H_8
- (ii) $Os_5(CO)_{16}$
- (ii) $Os_6(CO)_{17}[P(OMe_3)]_3$

[6]

(d) (i) Give a definition of a metal cluster.

- [1]
- (ii) What are the two broad classes of metal carbonyl clusters?
- [2]
- (iii) $M_3(CO)_{12}$ clusters (M = Ru and Os) are unreactive. Give three ways by which they can be converted into more reactive derivatives. [6]
- (e) If the highly substituted complex [Mo(CO)₃L₃] is desired, which of the ligands P(CH₃)₃ or P(^tBu)₃ would be preferred? Give reasons for your choice. [3]

QUESTION THREE

- Na[(η⁵-C₅H₅)W(CO)₃] reacts with 3-chloroprop-1-ene to give a solid, **A**, which has a molecular formula (C₃H₅)(η⁵-C₅H₅)(CO)₃W. Compound **A** loses carbon monoxide on exposure to light and forms compound **B**, which has the formula (C₃H₅)(η⁵-C₅H₅)(CO)₂W. Treating compound **A** with hydrogen chloride and then potassium hexafluorophosphate, K⁺PF₆, results in the formation of a salt, **C**. Compound **C** has the molecular formula [(C₃H₆)(η⁵-C₅H₅)(CO)₃W]PF₆. Use this information and the 18-electron rule to identify the compounds **A**, **B**, and **C**. Sketch a structure for each, paying particular attention to the hapticity of the hydrocarbon.
- (b) The complex [Rh(H)(CO)(PPh₃)₃] can be used in the catalytic synthesis of n-pentanal from an alkene having one less carbon atom.
 - (i) Outline the main steps in the mechanism of this process indicating the reaction type of each step (such as oxidative addition) and identifying the catalytic species. [10]
 - (ii) Predict the influence of added triphenylphosphine on the rate of hydroformylation catalysed by [Rh(H)(CO)(PPh₃)₃]. [4]
- (c) Give the equation for a workable reaction that will convert $Fe(\eta^5-C_5H_5)_2$ into $Fe(\eta^5-C_5H_5)(\eta^5-C_5H_4COCH_3)$. [2]

QUESTION FOUR

- (a) (i) Give a balanced equation for the reaction of any of the lanthanide metals with aqueous acid. (ii) Explain why stable and readily isolable carbonyl complexes are unknown for the lanthanides. A mixture of lanthanide metal ions was prepared containing Ce³⁺, Eu³⁺ (iii) and Yb³⁺. To separate the ions, a portion of the solution of the ions was poured through a sulphonated polysterene ion-exchange resin. column was then eluted with a dilute solution of H4EDTA adjusted to pH 8 with ammonia. (1) Which ion comes out first? Explain. [4] Suggest another buffer solution that could be used to elute the ions (2) from the column. An empty, a half-filled and a completely filled 4f electronic level is often said to (b) confer stability on the oxidation state of a lanthanide ion. Cite examples which bear out this statement. [3] Use Hund's rules to derive the ground state term of Nd³⁺. (c) (i) [4] Hence determine the magnetic moment, µ. (ii) [5] The compound Ni₃ (C₅H₅)₃(CO)₂ has a single CO stretching absorption at 1761 (d) cm⁻¹. The IR data indicate that all C₅H₅ ligands are pentahapto and probably in identical environments. On the basis of these data, propose a structure. (i) [2]
 - Does the electron count for each metal in your structure agree with the 18-(ii) electron rule? [2]

QUESTION FIVE

an explanation.

(a) Describe the main types of interhalogen compounds giving examples of each. [6] (b) Predict the products of the following reactions of interhalogens: $ClF + S \rightarrow$ (i) [1] $ClF_3 + SbF_5 \rightarrow$ (ii) [1] $IF_5 + CsF \rightarrow$ (iii) [1] (c) Given that 1.84 g of IF₃ reacts with 0.93 g of [(CH₃)₄N]F to form a product X: identify X (i) [2] (ii) Use VSEPR model to predict the shapes of **(1)** IF_3 [2] **(2)** the cation in X [2] (3) the anion in X [2] (d) The interhalogen compound, I₂Cl₆ exists as a dimer in the solid state. Write a balanced equation for the preparation of this compound. (i) [2] I₂Cl₆ undergoes dissociation on warming to room temperature. Write the (ii) reaction for the dissociation process. [3] Ligand substitution reactions on metal clusters are often found to occur by (e) associative mechanisms, and it is postulated that these occur by initial breaking of an M-M bond, thereby providing an open coordination site for the incoming

ligand. If the proposed mechanism is applicable, which would you expect to undergo the fastest exchange with added ¹³CO? Co₄(CO)₁₂ or Ir₄(CO)₁₂? Suggest

[3]

QUESTION SIX

Identify one significant role in biological processes for the elements Fe, Mn, Mo, (a) Cu, and Zn. [5] What role does the magnesium ion play in the functioning of chlorophyll? [2] (b) State the main components of cobalamin. [4] (c) (i) How do B₁₂, B_{12r}, and B_{12s} differ? [1] (ii) Arrange $[Na(H_2O)_6]^+$, $[Sc(H_2O)_6]^{3+}$, $[Mn(H_2O)_6]^{2+}$, and $[Ni(H_2O)_6]^{2+}$ in order of (d) increasing acidity. [4] The molecule (CH₃)₂N-PF₂ has two basic atoms, P and N. One is bound to B in a (e) complex with BH₃, the other to B in a complex with BF₃. Decide which is which and state your reason. (f) Consider each of the following solvents: (ii) acetic acid, CH₃COOH (iii) sulphuric acid, H₂SO₄ (i) ammonia, NH₃ Give equations for autoionization of the pure solvents. (1) **(2)** Give appropriate equations to show what will happen if CH₃COOH is dissolved in (i) NH3 and (ii) H2SO4. [2]

PERIODIC TABLE OF ELEMENTS

	GNOOLO	alload	
	OCTO	OTTES	
Ì			

	7			5		,	ከ		•	4			ယ			2			_		PERIODS		
87	Fr	223	55	င္ပ	132.91	37	R B	85.468	19	×	39.098	11,	Na	22.990	ω	<u>.</u>	6.941	_	H	1.008	IA	_	
88	Ra	226.03	56	Ва	137.33	38	Sr	87.62	20	Ca	40.078	12 •	Mg	24.305	4	Be	9.012				IIA	2	
89	**Ac	(227)	57	*La	138.91	39	×	88.906	21	&	44.956										ШВ	ယ	
104	Rf	(261)	72	Hſ	178.49	40	Zr	91.224	22	Ħ	47.88										IVB	4	
105	Ha	(262)	73	Ta	180.95	41	3	92.906	. 23	<	50.942										VB	5	
106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Ç	51.996		TRAN								VIB	6	
107	Uns	(262)	75	Re	186.21	43	Tc	98.907	25	Mn	54.938		TRANSITION ELEMENTS								VIIB	7	
108	Uno	(265)	76	S _O	190.2	44	Ru	101.07	26	Fe	55.847		ELEM									8	
109	Une	(266)	77	Ŧ	192.22	45	Rh	102.91	27	င် င	58.933		ENTS								VIIIB	9	
110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	3	58.69											10	
			79	Au	196.97	47	Ag	107.87	29	Cu	63.546				Atomic No.	Symbol	Atomic mass				B	11	
			80	Hg	200.59	48	Cd	112.41	30	Zn	65.39					LJ					IB	12	
			81	11	204.38	49	In	114.82	31	Ga	69.723	5	; ≥	26.982	3	. 6	118.03				IIIA	13	
			82	Рb	207.2	50	Sn	118.71	32	Ge	72.61	14	Z Z	28.086	0	` (17.011	10 011			IVA	14	
			83	Bi	208.98	51	Sb	121.75	33	As	74.922	15	ار ار ار ار	30.974	,	1 7	14.00/	14 007			VA	15	,
			84	Po	(209)	52	Te	127.60	34	S. C.	78.96	Io	; v	32.06	•	۰ (13.999	15 000			VIA	16	
			85	At	(210)	53	-	126.90	35	βľ	79.904	1,	12 C	35.453	7	o +	10.550	10 000			AIIA	17	5
			86	R	(222)	54	Xe	131.29	36	? ?	83.80	10	Ar	39.948	10	1 2	20.100	20 100) LE	1.005	ALIIA	218	5

*Lantl

**Act

										2	1	1/0 00	┙	170 07
	140.12	140.91	144.24	_	150.36	151.96	157.25	158.93	162,50	164.93	167.26	168.93		1/4.9/
athonido Comios	Ç	P۲	ď	Pm (Sm	Eu	<u>S</u>	ď	Dγ	Ho	E.	Tm	Уb	Lu
utilanide peries	(•				3	. !	`	``	ì	6	20	_	71
	58	59	60		62	63	64	65	66	67	68	69		1
atinide Cories	232 04	231 04		237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
VCCTITIOG DCLICS	100	1			1			,	,	!	1			•
	7	Pa	=	Z	Pu	Am	Cm	Βk	Ω	ES	Km.	Md		Ļ
	-			-		•	2	3	8	3	3	121		133
	90	91		93	94	95	96	97	86	99	100	101		201
								•						

() indicates the mass number of the isotope with the longest half-life.