UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2008

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A list of integrals, a data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

- a. Explain how Einstein's introduction of quantization accounted for the heat capacities of metals at low temperatures. [5]
- b. The work function of platinum is 5.65 eV.
 - (i) What is the minimum frequency of light required to observe the photoelectric effect on Pt? [3]
 - (ii) If light with 150 nm wavelength is absorbed by the surface, what is the velocity of the ejected electrons? [3]
 - (iii) What is the wavelength associated with the electron traveling at this speed? [3]
- c. Show that $f(x) = e^{2x}$ is an eigenfunction of the operator $\hat{\Omega} = \frac{d^2}{dx^2} + 2\frac{d}{dx} + 3$ and determine the eigen value. [5]
- d. Determine the commutator of the operators $\hat{A} = x^2 \frac{d}{dx}$ and $\hat{B} = \frac{d^2}{dx^2}$ [6]

Question 2 (25 marks)

- a. Consider the function $\psi(x) = \frac{\sin \pi x}{a} + \frac{\sin 2\pi x}{a}$.
 - (i) Is $\psi(x)$ an acceptable function for the particle in a one dimensional box of length a? [4]
 - (ii) Is $\psi(x)$ an eigenfunction of the total energy operator $\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2}$?
- b. Consider a particle confined to a one-dimensional box of length L, and whose wavefunction is $\psi(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$, n = 1, 2, 3, ...
 - (i) What are the most likely locations of the particle when n = 3? [5]
 - (ii) Calculate the probability that the particle will be found between 0.49L and 0.51L when n = 1 and when n = 2. [4]
- c. A two dimensional oscillator has the potential energy

$$V = \frac{1}{2}k(x^2 + y^2)$$

- (i) Write down the expression for the Schrödinger equation for this system. [3]
- (ii) The energy levels of a one dimensional oscillator are $E = (v + \frac{1}{2})hv$, v=0, 1, 2,... Use this to write an expression for the energy levels of a two dimensional oscillator. [2]
- (iii) What is the degeneracy of the first four energy levels. [3]

Question 3 (25 marks)

a. One of the excited states of the hydrogen atom is described by the wavefunction

$$\psi = \left(2 - \frac{r}{a_0}\right)e^{-r/2a_0}$$

(i) Normalize ψ to 1.

- [6]
- (ii) Evaluate the expectation value of r for the hydrogen atom with the above wavefunction. [7]
- b. Specify and account for the selection rules for transitions in hydrogenic atoms.

 [4]
- c. What atomic terms are possible for the electron configuration ns¹np¹? Which term is likely to lie lowest in energy? [5]
- d. What values of J may occur in the term ³D. How many states (distinguished by the quantum number M_J) belong to each level? [3]

Question 4 (25 marks)

- a. Distinguish between a bonding and an anti-bonding orbital. [5]
- b. Use molecular orbital theory to explain why the binding energy of N_2^+ is less than that of N_2 whilst that of O_2^+ is greater than that of O_2 . [6]
- c. The ground state of O_2^+ is ${}^2\Pi_g$ and the next few excited states are ${}^4\Pi_u$, ${}^2\Pi_u$, ${}^4\Sigma_g^-$, ${}^2\Delta_g$, ${}^2\Sigma_g^-$, and ${}^4\Sigma_u^-$. On the basis of the selection rules, which of the excited states can be accessed from the ground state by absorption of UV light?
- d. Predict the number of unpaired electrons and the ground state term of (i) NO and (ii) CO [8]

Question 5(25 marks)

a. The following lines were observed in the microwave spectrum of H¹²⁷I and D¹²⁷I between 60 cm⁻¹ and 90 cm⁻¹:

Molecule		Frequen	cy, cm ⁻¹	
H ¹²⁷ I	64.275	77.130	89.985	
$D^{127}I$	65.070	71.577	78.084	84.591

- (i) Calculate the values of B, I, and r_e for each molecule. [12]
- (ii) In each case what transition gives rise to the first line above?
 [4]

(atomic masses are H 1.0078 u, D 2.0140 u and ¹²⁷I 126.9045 u)

- b. Write down the expression for vibrational-rotational energy levels of a diatomic molecule assumed to be rigid. [3]
- c. Obtain a general expression for the change in energy of the R-branch in HCl in the lowest vibrational state. [4]

Question 6 (25 marks)

- a. The fundamental and first overtone transitions of ¹²C¹⁶O occur at 2143.0 cm⁻¹ and 4260.0 cm⁻¹, respectively. Given that the isotopic masses of ¹²C and ¹⁶O are 12 u (exactly) and 15.9949 u, respectively, calculate
 - (i) The equilibrium vibrational frequency [5]
 - (ii) The anharmonicity constant [3]
 - (iii) The exact zero point energy [3]
 - (iv) The force constant of the molecule [4]
- b. The N₂O molecule has three strong bands in its infrared spectrum at 588.8 cm⁻¹, 1285.0 cm⁻¹, and 2223.5 cm⁻¹. All have been shown to be fundamentals and the molecule has been shown to be linear.
 - (i) Explain why CO₂, which is also linear, has only two fundamental IR bands while N₂O has three. [5]
 - (ii) Where would you look for the overtone and combination bands in the IR spectrum of N_2O ? [5]

Useful Integrals and relations

$$d\tau = r^2 dr sin\theta d\theta d\varphi$$

$$\int x^n \exp(-ax) dx = \frac{n!}{a^{n+1}} \qquad (a > 0, \text{ n positive integer})$$

$$\int Sinx dx = -\cos x$$

$$\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax$$

$$2 \sin\theta \cos\theta = \sin 2\theta$$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u·	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{e}	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{N} = e\hbar/2m_{p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =		joules (2 X 10	 1 erg 1 eV/n		е	=	1 X 10 96 48:	o ⁻⁷ J 5 kJ mol	[-1
Prefixes	femto	pico	micro	milli	centi	deci	kilo	M mega 10 ⁶	giga

PERIODIC TABLE OF ELEMENTS

20.180 VIIIA 4.003 39.948 131.29 lle 2 83.80 **Kr** 36 Xe 54 (222) Rn 86 18.998 79.904 126.90 VIIA **Br** 35 (210) **At** 85 17 15.999 27.60 32.06 78.96 **Se** 34 ۸I۸ (209) **Po** 84 S 9 14.007 30.974 Sb S1 208.98 **Bi** 74.922 **As** 33 15 ٧ 28.086 12.011 Sn 50 207.2 **Pb** 72.61 **Ge** 32 ΙNΑ 14 **S** 4 26.982 114.82 204.38 69.723 Atomic mass - 10.811 ¥ **AI In** 13 Symbol B Atomic No. 200.59 12.41 Cq 48 12 <u>B</u> Atomic No. 53.546 107.87 196.97 **Ag** 47 **Au** 79 13 106.42 Pd 46 95.08 Pt 78 (267) Uun 110 10 GROUPS FRANSITION ELEMENTS 58.933 92.22 102.91 **Rh** 45 (266) Une 109 55.847 101:07 190.2 Os 76 (265) Uno ∞ VIIB 54.938 98.907 Tc 43 186.21 **Re** 75 (262) **Uns** 107 51.996 W 74 74 (263) Unh 106 95.94 **Mo** 42 VIB 9 92.906 180.95 VB **S** = Ta 73 (262) Ha 105 91.224 178.49 IVB Hf 72 72 (261) Rf 104 44.956 Sc 21 88.906 *La 57 (227) **Ac 89 **X** 24.305 40.078 Ca 20 9.012 **Be** 4 37.33 87.62 **Sr** 38 **Ba** 56 226.03 Mg **Ra** 88 2 ≤ 22.990 39.098 1.008 85.468 **Rb** 37 132.91 6.941 Li 3 <u>z</u> = ≤ Cs 55 223 Fr 87 **¥** 6 PERIODS S 9 7

cs
cri
e Se
id
าลเ
ntl
La
*

**Actinide Series

	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ပိ	Pr Nd	PZ	Pm	Sm	Eu	РS	Tp	Dy	Ho	Er	Tm	Λp	Lu
	59	09	19	62	63	64	65	99	29	89	69	70	11
232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
Th	Pa	Ω	αN	Pu	Am	Cm	Bk	ŭ	Es	Fm	Md	No	Ľ
06	16	92	93	94	95	96	62	86	66	001	101	102	103

() indicates the mass number of the isotope with the longest half-life.