UNIVERSITY OF SWAZILAND FINAL DECEMBER EXAMINATION 2007

TITLE OF PAPER

Introductory Organic Chemistry

COURSE NUMBER

C203

:

TIME

Three Hours

INSTRUCTIONS

Answer any FOUR Questions. Each

Question carries 25 Marks.

This Examination Paper Contains 6 (Six) Printed Pages Including This Page

You must not open this paper until the Chief Invigilator so has granted permission to do.

SECTION A: CHEMICAL BONDING

Question 1

- (a) Name any five elements in the periodic table which are most commonly associated with the majority of organic compounds. (5 marks)
- (b) Using the principles and rules that govern the distribution of electrons in atomic orbitals, write the ground state electron configuration for each atom named in (a) above. (5 marks)
- (c) Why is knowledge of electron configuration of an element important in the study of molecular structure and properties of carbon compounds. (5 marks)
- (d) With the aid of suitable diagrams and formulas, explain the following terms:

(i) An orbital (4 marks)

(ii) Lewis Structure (3 marks)

(iii) Chemical Bond (3 marks)

Question 2

(a) Briefly describe the structure and bonding characteristics of ammonia molecule (NH₃) in terms of the following three modes of bonding:

(i) The Lewis model (3 marks)

(ii) Valence Shell Electron Pair Repulsion (VSEPR) theory. (3 marks)

(iii) Orbital hybridization (3 marks)

- (b) (i) Write two resonance structures for the formate ion HCO_2 . (3 marks)
 - (ii) Explain what these structures predict for:

(1) The carbon-oxygen bond lengths of the formate ion. (2 marks)

(2) The electrical charge on the oxygen atoms. (2 marks)

(c) Write the dot structure, the dash structure and the bond – line formular for each of the following molecules:

(i) (CH₃)₂ CHOH (3 marks) (ii) (CH₃)₂ CH CH₂CH₂OH (3 marks)

(iii) $CH_3 \ddot{Q} CH_3$ (3 marks)

SECTION B: STEREOCHEMISTRY

Question 3

(a) Briefly explain the following terms and give examples:

(i)	Optical isomers	(3 marks)
(ii)	Diastereoisomers	(3 marks)
(iii)	Walden inversion.	(3 marks)

(b) (i) Write the sequence of reaction that describes the synthesis of 2 – butanol (I) by the nickel catalysed hydrogenation of butanone (II) (2 marks)

- (ii) Use an appropriate diagram to illustrate the stereochemical aspects of the reaction of butanone with hydrogen in the presence of a nickel catalyst. (2 marks)
- (iii) Explain why the 2 butanol products are obtained in equal amounts as a racemate. (2 marks)
- (iv) Suggest a method for synthesis of 2 butanol which does not produce a racemic mixture. (2 marks)

(c) Specify the configuration as R and S in each stereogenic centre of the following molecules:

Question 4

(a) Examine the Fischer projection structure for 2,3-dihydroxybutanoic acid molecule in Figure I and answer the following questions:.

Figure I: Fischer projection structure for 2,3-dihydroxybutanoic acid

- (i) How many stereoisomers of 2,3-dihydroxybutanoic acid are possible? (2 marks)
- (ii) Draw Fischer projection structure for all the possible stereoisomers of 2,3-dihydroxybutanoic acid. (3 marks)
- (iii) Write a three dimensional structure for each of the following compounds:
 - (a) (2S, 3R) 2.3 Dihydroxybotanoic acid.

(2 marks)

(b) (2S, 3S) - 2,3 - Dihydroxybutanoic acid

(2 marks)

(b) (i) Briefly outline a sequence of reactions that describes the resolution of the racemic form of latic acid (1) using optically pure (S) - 1 – phyenyl ethylamine (2). (6 marks)

COOH

HO

$$CH_3$$

(±) Lactic Acid

(1)

 CH_3

(S) – 1-phenylethylamine

(2)

- (iii) In the resolution of lactic acid using (S)-1-phenylethylamine, the compound obtained by recrystallization of the mixture of diastereomeric salts is: (S) phenylethylammonium (R) lactate. The other component of the mixture is more soluble and remains in solution in the re-crystalization solvent. What is the name and configuration of the more soluble salt? (3 marks)
- (c) Describe briefly how an enzyme could be used in the resolution of a racemic modification. (7 marks)

SECTION C: REACTIONS AND SYNTHESIS OF ORGANIC COMPOUNDS

Question 5

(a) Write a brief and full explanation of the following terms:

- (i) Chemical reaction (2 marks) (ii) The reaction profile (3 marks)
- (iii) Reaction mechanism (3 marks)
- (b) (i) List the most important factors which affect the rates of substitution by:
 - o S_N^2 mechanism o S_N^1 mechanism (3 marks)

Heating optically active (S) - 3 - bromo - 3 - methylhexane with aqueous acetone affords two products A and B (see reaction below).

- (ii) Draw the correct structure for compounds A and B. (2 marks)
- (iii) Write a valid mechanism for the formation of the products A and B. (2 marks)
- (iv) What is the name of the reaction involved in the transformation of (S) 3 bromo-3-methylhexane to compounds A and B. (2 marks)
- (c) Write the structure of the main product expected from the following reactions:

(i)
$$Cl$$
 $Acetone$
?
(ii) $ONa + Br$
 $Ethanol$
?
(2 marks)

(2 marks)
?
(2 marks)
?

(v) The reaction of cyclopentenyl bromide (1) and sodium cyanide to give cyclopentanyl cyanide (2), (shown below) proceeds faster if a small amount of sodium iodide (Na1) is added to the reaction mixture. Suggest a reasonable mechanism to explain the catalytic function of sodium iodide.

(2 marks)

Question 6

Diethylmalonate is prepared commercially by hydrolysis and esterification of ethylcyanoacetate. The preparation of ethylcyanoacetate proceeds via ethylchloroacetate and begins with acetic acid.

NCCH₂COOCH₂CH₃ Ethylcyanoacetate

- (a) Write a sequence of reactions that describe the synthesis of Diethylmalonate.
 (10 marks)
- (b) Write three general formulas corresponding to the three classes of aliphatic amines. Name the classes and give an example of the common compounds in each class. (6 marks)
- (c) Give a sequence of reactions showing how each amine cited in (b) above would react with nitrous acid.
- (d) Write the sequence of reactions which describe the preparation of a diazonium salt from aniline. Give the structure of the product expected from the reaction of the resulting diazonium salt with water. (3 marks)