UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION

ACADEMIC YEAR 2007/2008

TITLE OF PAPER:

INTRODUCTORY INORGANIC

CHEMISTRY

COURSE NUMBER:

C201

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS.

ANSWER ANY FOUR (4) QUESTIONS.

EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE **USED**

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a)	The photoelectric effect is the basis of the spectroscopic technique known as
` `	photoelectron spectroscopy. An X-ray photon of wavelength 10 ⁻⁷ cm is directed
	onto a piece of potassium metal. If one-fifth of the photon energy is used up for
	working against electrostatic forces

(i) what will be the maximum wavelength of light that can produce photoelectric current for potassium metal? [3]

(ii) what will be the velocity of the ejected electron for that maximum wavelength? [3]

- (b) Calculate the wave numbers in reciprocal meters (m⁻¹) for the first and last lines in the Brackett and Pfund series of the hydrogen atom. Hence calculate the energy in joules associated with these lines. [8]
- (c) Various quantum numbers are needed to describe the state of an electron in an atom.
 - (i) What are these quantum numbers?
 - (ii) What properties of electrons or atomic orbitals are determined by these quantum numbers? [5]
- (d) If X, Y, and Z represent elements of atomic numbers 8, 17 and 56, respectively, predict the **type of bonds** and the **formulas formed** between:
 - (i) X and Y
- (ii) X and Z
- (iii) Y and Z
- [6]

QUESTION TWO

(a) Show by means of a diagram, and a simple calculation, the value of the radius ratio r^+/r^- which permits a salt to adopt a cation coordination number of three. [3]

(b) Using the data given below, predict the crystal structure of MgS:

IonIonic Radius (pm)Mg86S170

[3]

(c)

- (i) In terms of band theory, explain the difference in the electrical conductivities of a conductor, an insulator and a semi-conductor. [12]
- (ii) The energy gap in a semiconductor is 420 kJ mol⁻¹. Calculate the wavelength of radiation which is just sufficient to excite electrons across the gap. [3]
- (d) Which type of semiconductor (n-type or p-type) are the following materials? Justify your choice in each case.
 - (i) Si doped Ge
- (ii) GaAs doped with Se

QUESTION THREE

(a)	Explai (i) (ii)	n briefly what is meant by each of the following terms? Hybridization. Linear Combination of Atomic Orbitals (LCAO) method.	[4]
	(11)	Ellicar combination of Atomic orolans (Echto) inclica.	ניין
(b)	examp	are the geometric arrangements of sp ³ d ² and sp ³ d hybrid orbitals? le of a molecule which has a central atom with sp ³ d ² and another orbitals.	
(c)	Draw (i) (iii)	the molecular orbital diagrams for O ₂ and OF and determine the bond orders (ii) number of unpaired electrons magnetic properties	[12]
(d)		π bonding and antibonding molecular orbitals that result from confollowing atomic orbitals on separate atoms aligned along their z-a p_x and p_y (ii) p_x and d_{xy}	
QUE	STIO	N FOUR	
(a)	(i) (ii)	Define ionisation energy. Explain the following observations:	[1]
	, ,	(1) the ionisation energy of oxygen is less than that of nitro though oxygen is more electronegative and smaller than n	•
		(2) the first ionisation energy of potassium is less than that of but the second ionisation energy of potassium is greater of calcium.	f calcium,
(b)	Which (i)	of the following pairs has the greater radius: the element with atomic number 18 or the element with atomic 19?	c number
	(ii) (iii)	the element with atomic number 22 or the most likely ion of that of the element with atomic number 35 or the most probable ion for that element?	
		Explain the basis for your choices.	[6]
(c)	electro		ed by an
	(i) From v	the 4s orbital in Cr. (ii) the 3d orbital in Cr. which orbital would an electron be removed to form the Cr ⁺ ion?	[6]
(d)	Explai (i)	n or account for the following: Boron halides are Lewis acids only, but trivalent phosphorus co can serve both as Lewis acids and Lewis bases.	ompounds [3]
	(ii)	Although nitrogen and phosphorus are in the same group of the table their chlorides NCl ₃ and PCl ₃ produce totally different prohydrolysis.	periodic

QUESTION FIVE

- (a) Explain or account for the following:
 - the reactivity and nature of products for the reaction of lithium through caesium with oxygen. [4]
 - (ii) the boiling point of methane (CH₄) is below that of the corresponding hydride of silicon (SiH₄) but the boiling point of water (H₂O) is above that of hydrogen sulphide (H₂S). [4]
- (b) (i) Draw the structure of diborane, B₂H₆, and describe the bonding. [7]
 - (ii) Write a balanced chemical equation for the reaction between B_2H_6 and $N(CH_3)_3$. [2]
- (c) Describe concisely the following:
 - (i) Inert pair effect. (ii) Oxides of phosphorus. [8]

QUESTION SIX

- (a) On treatment with cold water, an element (P) reacted quietly, liberating a colourless, odourless gas (Q) and a solution (R). The gas (Q) reacts with lithium metal to give a solid product (S) which effervesced with water to give a strongly basic solution (T). When carbon dioxide was bubbled through solution (R), an initial white precipitate (U) was formed, but this re-dissolved to form a solution (V). Precipitate (U) gives off a gas with dilute hydrochloric acid, and produced a deep red colouration to a Bunsen flame. When (U) was heated with carbon at 1000 °C, a caustic white compound (W) was formed, which when heated with carbon at 1000 °C gave a solid (X) which has some commercial importance.
 - (i) Identify with reasons the compounds (P) to (X).
 - (ii) Write balanced equations for each of the reactions described above.
 - (iii) A total of 1.000 g of (P) was added to water and the solution was made up to 250 mL in a volumetric flask. If 25.00 mL of the resulting solution is titrated with 0.0250 M HCl, calculate the volume of HCl required for neutralization. [10]
- (b) Write a balanced reaction equation to show the amphoteric nature of Be(OH)₂. [2]
- (c) (i) What is an "alum"? [1]
 - (ii) Give the formulae of TWO alums. Choose one of the alums, and describe simple chemical tests to identify the ions in the compound. Write equations for your tests where possible. [6]
- (d) Define the following terms:
 - (i) α decay. (ii) γ radiation. (iii) nuclear fission. [3]
- (e) (i) Write equations showing how ²⁷₁₂Mg and ⁴⁰₁₉K undergo β decay and electron capture respectively. [2]
 - (ii) Complete the following reaction: ${}^{6}_{3}\text{Li} + {}^{1}_{0}\text{n} \rightarrow ? + {}^{3}_{1}\text{H}$ [1]

PERIODIC TABLE OF ELEMENTS

	7			6			ر. در			4	-		w			2			<u> </u>		PERIODS		
87	Fr	223	55	င္သ	132.91	37	RЬ	85.468	19	×	39.098	11	Na	22.990	ω	Li	6.941	1	H	1.008	IA	1	
80	Ra	226.03	56	Ва	137.33	38	Sr	87.62	20	Ca	40.078	12	Mg	24.305	4	Ве	9.012				IIA	2	
89	**Ac	(227)	57 - 3	*La	138.91	39	×	88.906	21	Sc	44.956										IIIB	ω	
104	Rf	(261)	72	Hf	178.49	40	Zr	91.224	22	ï	47.88										IVB	4	
105	Ha	(262)	73	Ta	180.95	41	2	92.906	23	~	50.942										VΒ	Ŋ	
106	Unh	(263)	74	*	183.85	42	Mo	95.94	24	Cr	51.996		TRAN				•				VIB	6	
107	Uns	(262)	75	Re	186.21	43	Te	98.907	25	Mn	54.938		TRANSITION ELEMENTS								VIIB	7	
108	Uno	(265)	76	os.		ı	Ru		Į į	Fe	55.847		ELEM									∞	Ω
109	Une	(266)	77	Ir	192.22	45	Rh	102.91	27	င္၀	58.933		ENTS								VIIIB	9	GROUPS
110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	Z	58.69											10	
			79	Au	196.97	47	Ag	107.87	29	Cu	63.546				Atomic No.	Symbol	Atomic				ΙB	11	
			80	Hg	200.59	48	С	112.41	30	Zn	65.39				c No.	bol _	tomic mass—	ı			IIB	12	
			81	11	204.38	49	In	114.82	31	Ga	69.723	13	Al	26.982	5	₩	10.811				IIIA	13	
			82	Pb	207.2	50	Sn	118.71	32	Gegy	72.61	14	Site	28.086	6	C	12.011				IVA	14	
			83	Bi	208.98	51	Sb	121.75	33	As	74.922	15	P	30.974	7	Z	14.007				٧A	15	
			84	Po	(209)	52	Te	127.60	34	Se	78.96	16	S	32.06	00	0	15.999				VIA	16	
			85	At	(210)	53	Ι	126.90	35	Br	79.904	17	Ω	35.453	9	দ	18.998				VIIA	17	
			86	Rn	(222)	54	Xe	131.29	36	Ķ,	83.80	18	Ar	39.948	10	Ze	20.180	2	He	4.003	VIIIA	18	

*Lanthanide Series

**Actinide Seri

	140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ide Series	Ce	Pr	N	Pm	Sm	Eu	Gd	ТЪ	Dy	Ho	Er	Tm.	YЪ	Lu
	58	59	60	61	62	63	2	65	66	, 67	68	69	70	71
le Series	232.04	231.04	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
	ТЪ	Pa	ď	Np	Pu	Am	Cm	Bk	Ω	Es	Fm	Μd	No	Lr
	9	91	92	93	94	95	96	97	98	99	100	101	102	103
													L	

() indicates the mass number of the isotope with the longest half-life.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	<i>c</i>	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	\boldsymbol{k}	$1.380\ 66\ \mathrm{X}\ 10^{23}\ \mathrm{J}\ \mathrm{K}^{-1}$
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		24
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	$8.854\ 19\ X\ 10^{-12}\ J^{-1}\ C^{2}\ m^{-1}$
	$4\pi\varepsilon_{o}$	$1.112 65 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	•	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ C}^{-2} \text{ m}^3$
Magneton		
Bohr	$\mu_B=e\hbar/2m_e$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear -	$\mu_N = e \hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g _e	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \varepsilon_o^2$	$1.097\ 37\ X\ 10^7\ m^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	\overline{G}	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²
Conversion factors		_

1 cal 1 eV			4.184 1.602	joules (2 X 10	(J) ⁽¹⁹ J	1 erg 1 eV/	molecu	le	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹ 23.061 kcal mol ⁻¹		
f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10 ⁻⁹	μ micro 10 ⁻⁶		c centi 10 ⁻²	d deci 10 ⁻¹	k kilo 10 ³	M mega 10 ⁶	G giga 10 ⁹	Prefixes	

 $\begin{array}{l} \textbf{Spectrochemical Series} \\ \Gamma < Br^{-} < S^{2^{-}} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < EtOH < C_{2}O_{4}^{2^{-}} < H_{2}O < EDTA < (NH_{3}, \,py) < \\ en < dipy < NO_{2}^{-} < CN^{-} < CO \end{array}$