UNIVERSITY OF SWAZILAND ### FINAL EXAMINATION ### ACADEMIC YEAR 2007/2008 TITLE OF PAPER: INTRODUCTORY INORGANIC **CHEMISTRY** **COURSE NUMBER:** C201 TIME ALLOWED: THREE (3) HOURS **INSTRUCTIONS:** THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25 MARKS. A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER. NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE **USED** PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR. # **QUESTION ONE** | (a) | What postulates did Bohr advance in explaining how electrons are confined to orbitals instead of slowing down or being attracted towards the nucleus? [5] | | | | | | | | | | | |-----|---|---|--|---|--|------------------------------------|--|--|--|--|--| | (b) | The transition from the $n = 7$ to the $n = 2$ level of hydrogen atom is accompanied by the emission of light slightly beyond the range of human perception. Determine the energy and the wavelength of this light. [5] | | | | | | | | | | | | (c) | Give a | ll the quantum | numbers of eac | ch of the valen | ce electrons in chlorine. | [3] | | | | | | | (d) | Account for the following observations: (i) Variation in electronegativity | | | | | | | | | | | | | $\frac{F}{4.10}$ $\frac{Cl}{2.83}$ $\frac{Br}{2.74}$ $\frac{I}{2.21}$ [3] | | | | | | | | | | | | | (ii) Variation in first ionisation energies of Group II metals (kJmol ⁻¹) | | | | | | | | | | | | | <u>Be</u> <u>Mg</u> <u>Ca</u> <u>Sr</u>
899 737 590 549 [3] | | | | | | | | | | | | (e) | If X, Y and Z represent elements of atomic number 9, 17 and 55 respectively, predict the type of bonds and the formulas formed between | | | | | | | | | | | | | (i) X | V - | (ii) X and Z | | Y and Z | [6] | | | | | | | QUE | STIO | N TWO | | | • | | | | | | | | (a) | | what circums | | • | ive sizes of ions and dets likely? | legree of
[6] | | | | | | | (b) | Will C | Ge-doped Si be | an n-type or p- | type semicond | luctor? Justify your cho | ice. [2] | | | | | | | (c) | What | _ | t frequency of | light that car | The band gap is abount promote an electron | | | | | | | | (d) | The hardness of water may be 'temporary' or 'permanent'. (i) What causes each of these conditions? | | | | | | | | | | | | | (ii) How is each condition treated? [8] | | | | | | | | | | | | (e) | colou
bubble
re-dis | rless, odourles
ed through solu
solved forming
abstances (A) t | s gas (B) and
ution (C) an in
s solution (E) | l a solution (
itial white pre
when more ca | A) reacted quickly lib C). When carbon dio cipitate (D) was formed arbon dioxide was addeduced and a quations for each | xide was
l, but this
d. Name | | | | | | | (f) | Account for the observation that Methanol, CH ₃ OH has a much higher boiling point than methyl mercaptan, CH ₃ SH. [2] | | | | | | | | | | | ## **OUESTION THREE** - (a) Determine the expected hybridisation of P, O and Sb in Cl₃P-O-SbCl₅. The P-O-Sb bond angle is 165°. [7] - (b) The hypofluorite ion, OF can be observed only with difficulty. - (i) Draw a clearly labelled energy level molecular orbital diagram for this ion. - (ii) Deduce the bond order. - (iii) Deduce how many unpaired electrons are in this ion. - (c) Sketch sigma bonding (σ) and antibonding (σ^*) molecular orbitals that result from the combination of s and p_x atomic orbitals on separate atoms. [3] - (d) For each of the following: Na, Al and S - (i) write the formula of the most common oxide, - (ii) classify each of the oxides as basic, acidic or amphoteric, - (iii) write balanced equations for the reaction with water of the basic and acidic oxides in 3d (ii) above. [8] ### **QUESTION FOUR** - (a) The second ionisation energy of carbon ($C^+ \to C^{2+} + e^-$) and the first ionisation energy of boron ($B \to B^+ + e^-$) both fit the reaction $1s^22s^22p^1 \to 1s^22s^2 + e^-$. Compare the two ionisation energies (24.383 and 8.298 eV, respectively) and explain the difference. - (b) Which of the following pairs has the greater radius? - (i) The element with atomic number 11 or the single positively charged ion formed by that element. - (ii) The element with atomic number 14 or the element with atomic number 32. - (iii) Phosphorus or sulphur. [6] [7] - (c) Use Slater's rules to calculate the effective nuclear charge (Z*) in vanadium experienced by - (i) one of the 4s electrons. - (ii) one of the 3d electrons. - (iii) Which type of electron is more likely to be lost when vanadium forms a positive ion? [7] - (d) Account for the following observations: - (i) There is no reaction between NCl₃ and Cl₂ whereas PCl₃ reacts with Cl₂ to give PCl₅. - (ii) Ionic compounds usually react rapidly whilst molecular covalent compounds usually react slowly. [6] # **QUESTION FIVE** | (a) | Descri | be the diffe | erence in st | ructure between | n (BeH ₂) _n and (H | $\mathrm{BeCl}_2)_n$. | [6] | | | | |-----|--|---|--|---|--|------------------------|----------------------------------|--|--|--| | (b) | Orthol (i) (ii) (iii) (iii) (iv) | How doe
most help
How stro
Why doe | es it ionise
oful?
ong an acid
s glycerol o | in water and water is it? | be written as H ₃ which way of write way of tralisation reaction re | riting the form | mula is the | | | | | (c) | | | | • | valent phosphoru
ain this observat | • | s can serve
[6] | | | | | (d) | Define (i) β | e the follow
decay | • | nuclear fusion | (iii) is | sotope | [6] | | | | | QUE | STIO | N SIX | | | | | | | | | | (a) | Write (i) N | - | ons to shov
ii) Cl ₂ | w the reactions l
(iii) HCl | oetween Al and
(iv) NaOH | (v) O ₂ | [5] | | | | | (b) | (i)
(ii)
(iii) | Give thre | e ways of r
ee uses of 0
1 CO2 be do | _ | | | [7] | | | | | (c) | Using | the data g
<u>Ion</u>
Cs
F | | y, predict the cry
c Radius (pm)
181
119 | stal structure of | fCsF: | [3] | | | | | (d) | Arrange the following compounds in order of increase in lattice energy: Mg(OH) ₂ , MgO, Al ₂ O ₃ , Na ₂ O, NaOH, Al(OH) ₃ Justify your order. [5] | | | | | | | | | | | (e) | anom | alous prop | perties whe | en compared with | n groups in the the other merence to the eler | nbers of the | table shows
same group
[5] | | | | # PERIODIC TABLE OF ELEMENTS | 1 | |---| | Name | | 3 | | A | | S | | Car | | Teal | | Atomic mass — Symbol — Atomic No. — Symbol — Atomic No. — See See See See See See See See See S | | Atomic mass — Symbol — Atomic No. — Symbol — Atomic No. — See See See See See See See See See S | | Atomic mass — Symbol — Atomic No. — Symbol — Atomic No. — See See See See See See See See See S | | 11 12 IB IIB IIB IIB Atomic mass — Symbol — Atomic No. 63.546 65.39 Cu Zn 29 30 107.87 112.41 Ag Cd 47 48 196.97 200.59 Au Hg 79 80 | | 12 IIB IIB ic mass — nbol — iic No. 65.39 Zn 30 112.41 Cd 48 200.59 Hg 80 | | | | | | 13
IIIA
10.811
→ B
→ S
26.982
Al
13
69.723
Ga
31
114.82
In
49
204.38
T1
81 | | 14
IVA
12.011
C
6
28.086
Si He
14
72.61
Ge ₅ ,
32
118.71
Sn
50
207.2
Pb | | 15
VA
VA
14.007
N
7
30.974
P
15
74.922
As
33
121.75
Sb
51
208.98
Bi
83 | | 16
VIA
VIA
O
O
8
32.06
S
Se
34
127.60
Te
52
(209)
Po
84 | | 17
VIIA
VIIA
18.998
F
9
35.453
CI
17
79.904
Br
35
126.90
I
1
53
(210)
At | | 18 VIIIA 4.003 He 2 20.180 Ne 10 39.948 Ar 18 83.80 Kr 36 131.29 Xe 54 (222) Rn 86 | *Lanth **Act | | (258)
Md | (257)
Fm | (252)
Es | (251)
Cf | 65
(247)
Bk | (247)
Cm | 63
(243)
Am | 62
(244)
Pu | 237.05
Np | 238.03
U | 59
231.04
Pa | 58
232.04
Th | ctinide Series | |-------------|--------------------|-------------|----------------|-------------|--------------------------|-------------|--------------------------|--------------------------|---------------------|-------------|---------------------------|---------------------------|----------------| | Yb Lu | Tm | Er | H ₀ | Dy | Tb | CG. | Eu | Sm | Pm | Nd | Pr | Ce | thanide Series | | Н | 168 93 | 167 26 | 164 93 | 162 50 | 158 93 | 157 25 | 151 96 | 150 36 | (145) | 144 24 | 140 91 | 140 13 | | () indicates the mass number of the isotope with the longest half-life. # General data and fundamental constants | Quantity | Symbol | Value | | | |------------------------|---|---|--|--| | Speed of light | c | 2.997 924 58 X 10 ⁸ m s ⁻¹ | | | | Elementary charge | e | 1.602 177 X 10 ⁻¹⁹ C | | | | Faraday constant | $F = N_A e$ | 9.6485 X 10 ⁴ C mol ⁻¹ | | | | Boltzmann constant | \boldsymbol{k} | $1.380 \ 66 \ X \ 10^{23} \ J \ K^{-1}$ | | | | Gas constant | $R = N_A k$ | 8.314 51 J K ⁻¹ mol ⁻¹ | | | | | | $8.205 78 \times 10^{-2} \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$ | | | | | | 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ | | | | Planck constant | h | 6.626 08 X 10 ⁻³⁴ J s | | | | | $\hbar = h/2\pi$ | 1.054 57 X 10 ⁻³⁴ J s | | | | Avogadro constant | N_A | 6.022 14 X 10 ²³ mol ⁻¹ | | | | Atomic mass unit | u | 1.660 54 X 10 ⁻²⁷ Kg | | | | Mass | | _ | | | | electron | m_e | 9.109 39 X 10 ⁻³¹ Kg | | | | proton | m_p | 1.672 62 X 10 ⁻²⁷ Kg | | | | neutron | m_n | 1.674 93 X 10 ⁻²⁷ Kg | | | | Vacuum permittivity | $\varepsilon_o = 1/c^2 \mu_o$ | $8.854\ 19\ X\ 10^{-12}\ J^{-1}\ C^2\ m^{-1}$ | | | | 1 | $4\pi\varepsilon_{0}$ | $1.112 65 \times 10^{-10} J^{-1} C^2 m^{-1}$ | | | | Vacuum permeability | μ_o | $4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | | , a.c., p, | | $4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ C}^{-2} \text{ m}^3$ | | | | Magneton | | | | | | Bohr | $\mu_B = e \hbar/2m_e$ | 9.274 02 X 10 ⁻²⁴ J T ⁻¹ | | | | nuclear · | $\mu_N = e\hbar/2m_p$ | 5.050 79 X 10 ⁻²⁷ J T ⁻¹ | | | | g value | g _e | 2.002 32 | | | | Bohr radius | $a_o = 4\pi\varepsilon_o \hbar/m_e e^2$ | 5.291 77 X 10 ⁻¹¹ m | | | | Fine-structure constan | • | 7.297 35 X 10 ⁻³ | | | | Rydberg constant | $R_{\infty} = m_e e^4 / 8h^3 c \varepsilon_0$ | 1.097 37 X 10 ⁷ m ⁻¹ | | | | Standard acceleration | 11∞ mec /on co | 1.097 37 11 10 III | | | | of free fall | σ | 9.806 65 m s ⁻² | | | | Gravitational constant | g
: G | 6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻² | | | | Gravitational companie | . 0 | 0.072 33 71 10 11 11 115 | | | | Conversion fact | tors | | | | | 1 cal | 4.184 joules (J) 1 | erg 1 X 10 ⁻⁷ J | | | | 1 eV | | eV/molecule 96 485 kJ mol ⁻¹ | | | | 1 cal
1 eV | | 4.184 joules (J)
1.602 2 X 10 ⁻¹⁹ J | | | 1 erg
1 eV/molecule | | | 1 X 10 ⁻⁷ J
96 485 kJ mol ⁻¹
23.061 kcal mol ⁻ | | | |---------------------------------|--------------------------------|---|--------------------------------|-------|--------------------------------|------|------------------------------|---|------------------------------|----------| | f
femto
10 ⁻¹⁵ | p
pico
10 ⁻¹² | n
nano
10 ⁻⁹ | μ
micro
10 ⁻⁶ | milli | c
centi
10 ⁻² | deci | k
kilo
10 ³ | M
mega
10 ⁶ | G
giga
10 ⁹ | Prefixes | $\begin{array}{l} \textbf{Spectrochemical Series} \\ \Gamma < Br^{-} < S^{2^{-}} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < EtOH < C_{2}O_{4}^{2^{-}} < H_{2}O < EDTA < (NH_{3}, \,py) < \\ en < dipy < NO_{2}^{-} < CN^{-} < CO \end{array}$