UNIVERSITY OF SWAZILAND

FINAL EXAMINATION

ACADEMIC YEAR 2007/2008

TITLE OF PAPER:

INTRODUCTORY INORGANIC

CHEMISTRY

COURSE NUMBER:

C201

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE AND A TABLE OF CONSTANTS HAVE BEEN PROVIDED WITH THIS EXAMINATION PAPER.

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE **USED**

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a)	What postulates did Bohr advance in explaining how electrons are confined to orbitals instead of slowing down or being attracted towards the nucleus? [5]										
(b)	The transition from the $n = 7$ to the $n = 2$ level of hydrogen atom is accompanied by the emission of light slightly beyond the range of human perception. Determine the energy and the wavelength of this light. [5]										
(c)	Give a	ll the quantum	numbers of eac	ch of the valen	ce electrons in chlorine.	[3]					
(d)	Account for the following observations: (i) Variation in electronegativity										
	$\frac{F}{4.10}$ $\frac{Cl}{2.83}$ $\frac{Br}{2.74}$ $\frac{I}{2.21}$ [3]										
	(ii) Variation in first ionisation energies of Group II metals (kJmol ⁻¹)										
	<u>Be</u> <u>Mg</u> <u>Ca</u> <u>Sr</u> 899 737 590 549 [3]										
(e)	If X, Y and Z represent elements of atomic number 9, 17 and 55 respectively, predict the type of bonds and the formulas formed between										
	(i) X	V -	(ii) X and Z		Y and Z	[6]					
QUE	STIO	N TWO			•						
(a)		what circums		•	ive sizes of ions and dets likely?	legree of [6]					
(b)	Will C	Ge-doped Si be	an n-type or p-	type semicond	luctor? Justify your cho	ice. [2]					
(c)	What	_	t frequency of	light that car	The band gap is abount promote an electron						
(d)	The hardness of water may be 'temporary' or 'permanent'. (i) What causes each of these conditions?										
	(ii) How is each condition treated? [8]										
(e)	colou bubble re-dis	rless, odourles ed through solu solved forming abstances (A) t	s gas (B) and ution (C) an in s solution (E)	l a solution (itial white pre when more ca	A) reacted quickly lib C). When carbon dio cipitate (D) was formed arbon dioxide was addeduced and a quations for each	xide was l, but this d. Name					
(f)	Account for the observation that Methanol, CH ₃ OH has a much higher boiling point than methyl mercaptan, CH ₃ SH. [2]										

OUESTION THREE

- (a) Determine the expected hybridisation of P, O and Sb in Cl₃P-O-SbCl₅. The P-O-Sb bond angle is 165°. [7]
- (b) The hypofluorite ion, OF can be observed only with difficulty.
 - (i) Draw a clearly labelled energy level molecular orbital diagram for this ion.
 - (ii) Deduce the bond order.
 - (iii) Deduce how many unpaired electrons are in this ion.
- (c) Sketch sigma bonding (σ) and antibonding (σ^*) molecular orbitals that result from the combination of s and p_x atomic orbitals on separate atoms. [3]
- (d) For each of the following: Na, Al and S
 - (i) write the formula of the most common oxide,
 - (ii) classify each of the oxides as basic, acidic or amphoteric,
 - (iii) write balanced equations for the reaction with water of the basic and acidic oxides in 3d (ii) above. [8]

QUESTION FOUR

- (a) The second ionisation energy of carbon ($C^+ \to C^{2+} + e^-$) and the first ionisation energy of boron ($B \to B^+ + e^-$) both fit the reaction $1s^22s^22p^1 \to 1s^22s^2 + e^-$. Compare the two ionisation energies (24.383 and 8.298 eV, respectively) and explain the difference.
- (b) Which of the following pairs has the greater radius?
 - (i) The element with atomic number 11 or the single positively charged ion formed by that element.
 - (ii) The element with atomic number 14 or the element with atomic number 32.
 - (iii) Phosphorus or sulphur.

[6]

[7]

- (c) Use Slater's rules to calculate the effective nuclear charge (Z*) in vanadium experienced by
 - (i) one of the 4s electrons.
 - (ii) one of the 3d electrons.
 - (iii) Which type of electron is more likely to be lost when vanadium forms a positive ion? [7]
- (d) Account for the following observations:
 - (i) There is no reaction between NCl₃ and Cl₂ whereas PCl₃ reacts with Cl₂ to give PCl₅.
 - (ii) Ionic compounds usually react rapidly whilst molecular covalent compounds usually react slowly. [6]

QUESTION FIVE

(a)	Descri	be the diffe	erence in st	ructure between	n (BeH ₂) _n and (H	$\mathrm{BeCl}_2)_n$.	[6]			
(b)	Orthol (i) (ii) (iii) (iii) (iv)	How doe most help How stro Why doe	es it ionise oful? ong an acid s glycerol o	in water and water is it?	be written as H ₃ which way of write way of tralisation reaction re	riting the form	mula is the			
(c)				•	valent phosphoru ain this observat	•	s can serve [6]			
(d)	Define (i) β	e the follow decay	•	nuclear fusion	(iii) is	sotope	[6]			
QUE	STIO	N SIX								
(a)	Write (i) N	-	ons to shov ii) Cl ₂	w the reactions l (iii) HCl	oetween Al and (iv) NaOH	(v) O ₂	[5]			
(b)	(i) (ii) (iii)	Give thre	e ways of r ee uses of 0 1 CO2 be do	_			[7]			
(c)	Using	the data g <u>Ion</u> Cs F		y, predict the cry c Radius (pm) 181 119	stal structure of	fCsF:	[3]			
(d)	Arrange the following compounds in order of increase in lattice energy: Mg(OH) ₂ , MgO, Al ₂ O ₃ , Na ₂ O, NaOH, Al(OH) ₃ Justify your order. [5]									
(e)	anom	alous prop	perties whe	en compared with	n groups in the the other merence to the eler	nbers of the	table shows same group [5]			

PERIODIC TABLE OF ELEMENTS

1
Name
3
A
S
Car Car
Teal
Atomic mass — Symbol — Atomic No. — Symbol — Atomic No. — See See See See See See See See See S
Atomic mass — Symbol — Atomic No. — Symbol — Atomic No. — See See See See See See See See See S
Atomic mass — Symbol — Atomic No. — Symbol — Atomic No. — See See See See See See See See See S
11 12 IB IIB IIB IIB Atomic mass — Symbol — Atomic No. 63.546 65.39 Cu Zn 29 30 107.87 112.41 Ag Cd 47 48 196.97 200.59 Au Hg 79 80
12 IIB IIB ic mass — nbol — iic No. 65.39 Zn 30 112.41 Cd 48 200.59 Hg 80
13 IIIA 10.811 → B → S 26.982 Al 13 69.723 Ga 31 114.82 In 49 204.38 T1 81
14 IVA 12.011 C 6 28.086 Si He 14 72.61 Ge ₅ , 32 118.71 Sn 50 207.2 Pb
15 VA VA 14.007 N 7 30.974 P 15 74.922 As 33 121.75 Sb 51 208.98 Bi 83
16 VIA VIA O O 8 32.06 S Se 34 127.60 Te 52 (209) Po 84
17 VIIA VIIA 18.998 F 9 35.453 CI 17 79.904 Br 35 126.90 I 1 53 (210) At
18 VIIIA 4.003 He 2 20.180 Ne 10 39.948 Ar 18 83.80 Kr 36 131.29 Xe 54 (222) Rn 86

*Lanth

**Act

	(258) Md	(257) Fm	(252) Es	(251) Cf	65 (247) Bk	(247) Cm	63 (243) Am	62 (244) Pu	237.05 Np	238.03 U	59 231.04 Pa	58 232.04 Th	ctinide Series
Yb Lu	Tm	Er	H ₀	Dy	Tb	CG.	Eu	Sm	Pm	Nd	Pr	Ce	thanide Series
Н	168 93	167 26	164 93	162 50	158 93	157 25	151 96	150 36	(145)	144 24	140 91	140 13	

() indicates the mass number of the isotope with the longest half-life.

General data and fundamental constants

Quantity	Symbol	Value		
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹		
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C		
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹		
Boltzmann constant	\boldsymbol{k}	$1.380 \ 66 \ X \ 10^{23} \ J \ K^{-1}$		
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹		
		$8.205 78 \times 10^{-2} \text{ dm}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$		
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹		
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s		
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s		
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹		
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg		
Mass		_		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg		
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg		
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg		
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	$8.854\ 19\ X\ 10^{-12}\ J^{-1}\ C^2\ m^{-1}$		
1	$4\pi\varepsilon_{0}$	$1.112 65 \times 10^{-10} J^{-1} C^2 m^{-1}$		
Vacuum permeability	μ_o	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$		
, a.c., p,		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ C}^{-2} \text{ m}^3$		
Magneton				
Bohr	$\mu_B = e \hbar/2m_e$	9.274 02 X 10 ⁻²⁴ J T ⁻¹		
nuclear ·	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹		
g value	g _e	2.002 32		
Bohr radius	$a_o = 4\pi\varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m		
Fine-structure constan	•	7.297 35 X 10 ⁻³		
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \varepsilon_0$	1.097 37 X 10 ⁷ m ⁻¹		
Standard acceleration	11∞ mec /on co	1.097 37 11 10 III		
of free fall	σ	9.806 65 m s ⁻²		
Gravitational constant	g : G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²		
Gravitational companie	. 0	0.072 33 71 10 11 11 115		
Conversion fact	tors			
1 cal	4.184 joules (J) 1	erg 1 X 10 ⁻⁷ J		
1 eV		eV/molecule 96 485 kJ mol ⁻¹		

1 cal 1 eV		4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J			1 erg 1 eV/molecule			1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹ 23.061 kcal mol ⁻		
f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10 ⁻⁹	μ micro 10 ⁻⁶	milli	c centi 10 ⁻²	deci	k kilo 10 ³	M mega 10 ⁶	G giga 10 ⁹	Prefixes

 $\begin{array}{l} \textbf{Spectrochemical Series} \\ \Gamma < Br^{-} < S^{2^{-}} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < EtOH < C_{2}O_{4}^{2^{-}} < H_{2}O < EDTA < (NH_{3}, \,py) < \\ en < dipy < NO_{2}^{-} < CN^{-} < CO \end{array}$