UNIVERSITY OF SWAZILAND

Department of Chemistry

INTRODUCTORY CHEMISTRY II C112

FINAL EXAM (Supplimental)

Second term (semester) 2007-08

Notes:

Do not open this exam until told to do so.

This exam consists of 9 questions:
you are to work three of the first 4 (section I), and
two of the final 5 (section II).

[If you do not work three of the first four, you will lose 20 marks
for each one fewer you do not work:
if you work more than 4, only the first 3 will be marked.
For the total exam, only the first five attempted will be marked.]

Each question is worth 20 marks.

Be sure to indicate on your answer sheets which questions you are answering.
Begin each question on a fresh sheet on your answer scripts.

Show your work and express your answers clearly to the correct number of significant figures.

A periodic chart is included with this exam and some important chemical constants are given below on this page:

Non-programmable calculators are permitted to be used.

$$\begin{split} N_A &= 6.0221367 \times 10^{23} \text{ items/mol} \\ R &= 8.206 \times 10^{-2} \text{ (L)(atm)/(mol)(K)} \\ &= 8.314 \text{ J/(mol)(K)} \\ h &= 6.6256 \times 10^{-34} \text{(J)(s)} \\ c &= 2.9979 \times 10^8 \text{ m/s} \end{split} .$$

Introductory Chemistry II C 112

Final Exam (Supplemental) Second term (semester), 2007-08

Section I: Attempt three out of these four problems.

1	Δ	Write an	acceptable	structure	for cis-	7_ethvl_	3_methyl_4	4-decene
1.	А.	write an	acceptable	Structure	101 CIS-	/-CIIIVI-	3-1116u1v1-4	+-decene

- B. Write acceptable structures for four isomers of formula C₄H₁₀O
- C. Write the structure and name for the principal organic product in each of the following reactions:
 - i. 2-butanol + acetic acid →
 - ii. 2-hexene + bromine(molecular) →
 - iii. 2,6-dimethylcyclohexanol + {heat and acid} →
 - iv. cyclohexene + hydrogen(molecular) + [catalyst] →
 - v. benzene + HNO₃ + $[H_2SO_4(cat)]$ \rightarrow
 - vi. 3-methylheptanal + {oxidizing agent} →
- D. Write a complete balanced equation for the complete combustion of toluene (methylbenzene).
- E. Indicate which one of each of the following pairs of substances would be expected to have the <u>higher</u> boiling point:
 - i. 1,3,5,7-tetrapropylcyclodecane or cyclopropane
 - iii. 2-propanol or ethylmethylether
 - v. neon or benzene

- ii. barium acetate or butyl acetate
- iv. metallic gold or cyclohexanol
- vi. SiO₂ or 3-ethylpentane
- 2. A. Consider the equilibrium: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ When 1.200 mol of NH₃ was placed in an otherwise empty 1.00 liter vessel at a certain specified temperature, and allowed to come to equilibrium, it was found that the <u>equilibrium</u> concentration of NH₃ was 0.048 M. Calculate the value of K_c for this reaction at this temperature.
 - B. At 350°C, $K_c = 70$ for the equilibrium: $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ At <u>equilibrium</u>, the concentration of I_2 is found to be 1.32 M and that of H_2 is 0.100 M. Calculate the <u>equilibrium</u> concentration of HI.
 - C. At a certain high temperature, 2.00 moles each of gaseous iodine and gaseous hydrogen were introduced into an otherwise empty 1.00 L container—they reacted with each other and were allowed to come to equilibrium with the one product, gaseous hydrogen iodide [the same reaction as in part B, above]. At this temperature K_c = 9.00. Calculate the equilibrium concentration of all reactants and products.

3. The following data apply to the reaction between A, B, and C at a constant temperature:

exp	[A] ₀	[B] ₀	[C]。	$R_o(M/s)$
1	0.020 M	0.030 M	0.020 M	0.0398
2	0.060 M	0.030 M	0.020 M	0.358
3	0.060 M	0.060 M	0.020 M	0.715
4	0.020 M	0.030 M	0.040 M	0.0401
5	0.050 M	0.050 M	0.050 M	(??)

- A. Derive the <u>informed</u> rate law including the orders of reaction and the value of the *rate* constant, for this reaction.
- B. Calculate the initial rate for experiment #5.
- C. State the (overall) order of this reaction.
- C. What, if anything, would decrease the rate constant of a particular reaction?
- 4. A. Calculate the pH of each of the following solutions:
 - i. a 0.25 M solution of CH₃COOH (acetic acid)
 - ii. a 0.010 M solution of Ba(OH)₂ (barium hydroxide)
 - iii. a 0.25 M solution of HNO₃ (nitric acid)
 - iv. a 0.050 M solution of NH₃ (ammonia)
 - B. If it takes 28.64 milliliters of a 0.200 M solution of NaOH to exactly neutralize 25.37 milliliters of a hydrochloric acid solution, calculate the molarity of the hydrochloric acid solution.
 - C. Reconstruct the following grid on your scripts sheets and fill in the blanks.

solution	pН	[H ⁺]	[OH ⁻]	рОН	acidic/basic?
#1	4.44				
#2		$6.0 \times 10^{-10} M$			
#3			$3.8 \times 10^{-4} M$		

- D. Write the conjugate acid of methylamine and the conjugate base of formic (methanoic) acid.
- E. Aqueous solutions of which one(s) of the following would be basic and which one(s) would be acidic? i. KBr ii. AlCl₃ iii. methanol iv. NaC₂H₃O₂ v. NH₄NO₃ vi. KOH vii. HCl

Section II; Attempt two of the following problems. [Your choice]

- 5. A. Calculate the solubility, (in moles per liter), of Ag₂SO₄ in pure water. The K_{sp} of Ag₂SO₄ is 1.4 x 10⁻⁵
 - B. Calculate the K_{sp} of BaSO₄ which has a solubility of 1.05 x 10⁻⁵ M in pure water.
 - C. Calculate the solubility of Ag₂SO₄ in a 1.00 M solution of Na₂SO₄.
 - D. A. 20.0 mL of a 0.0024 M solution of AgNO₃ is mixed with 10.0 mL of a 0.0010 M solution of K₂SO₄.
 - i. what salt is most likely to precipitate?
 - ii. make calculations to predict whether or not that salt will, indeed, precipitate.
 - E. For a solution containing both barium and lead aqueous ions, both at a concentration of 0.10M, make calculations to predict which salt would be expected to precipitate first if a dilute solution of Na₂CO₃ were slowly added. The K_{sp} of PbCO₃ is 3.3 x 10^{-14} and that of BaCO₃ is 8.1 x 10^{-9} .
- 6. A. Calculate the energy of activation of a reaction which has rate constants of 3.41 x 10⁻³ M/s at 57°C and 9.88×10^{-2} M/s at 127° C.
 - B. Draw the potential energy diagram (graph) for this (one step) reaction which has an enthalpy of reaction of +26.4 kJ. Clearly indicate all quantities and label all other parts of the graph.
 - C. This reaction (in parts A & B, above) can be shown this way: $2X_{(g)} + Y_{(g)} \rightleftharpoons 2Z_{(g)}$ Which way will the equilibrium shift if

i. some Z is added?

ii. some Y is removed? iii. 0.10 mole X is added and 0.10 mole Z is removed?

iv. the reaction is cooled down? v. a catalyst is added?

vi. the volume is increased?

- 7. A. Calculate the number of milliliters of 0.20 M NaOH it will require to just neutralize 20.00 mL of 0.50 M HCl.
 - B. For the titration of 20.00 mL of 0.500 M HCl with 0.200 M NaOH, calculate the pH i. initially ii. at the ½-way point iii. at the stoichometric (equilvalence) point
 - C. Sketch the pH titration curve for the titration in part B
- 8. A. Write the Lewis electron dot structure for methyl acetate [CH₃CO₂CH₃] and indicate the shape and bond angles around each central atom and the hybridization for each non-hydrogen atom.
 - B. Write the Lewis structure of propene and indicate what kinds of atomic orbitals are overlapping for each carbon-carbon bond. Indicate the number of pi bonds and sigma bonds in this molecule.
 - C. Write the electronic configuration for the tin (IV) ion and then write the Lewis structure for tin (IV) sulfate. Indicate the formal charge for each atom in the sulfate ion.
- 9. A. A buffer solution is prepared by dissolving 1.50 mol HC₂H₃O₂ (acetic acid) and 0.500 mol NaC₂H₃O₂ (sodium acetate) in enough water to make 1.00 liter of solution. Calculate the pH of the solution.
 - B. Calculate the resulting pH when 0.50 moles of NaOH is added per liter of the buffer solution in part B-assuming no volume change.
 - C. Calculate the pH change when 0.50 moles of HCl is added per liter of pure water—assuming no volume change.

1					-			•						•			18
Group																	
L IA	ı																VIIIA
1 1	. 2											13	14	15	16	17	2
H												MB ·	IVB	VB	VIB	VIIB	He
1.0079	HA											ША	IVA	VA	VIA	VIIA	4.00260
3	4											5	6	7	8	9	10
Li	Ве											В	C	N.	0	F	Ne
6.941	9.61218											10.01	12.011	14.0067	15.9994	18.9984	20.179
111	12	3	4	• 5	6	7	8	9	10	11	12	13	14	15	16 .	17	18
Na	Mg	#IA	IVA	VA	VIA	VIIA		VIIIA			_	Al	Si	P	S	CI	Ar
22.9898	24.305	MIB	IVB	VB	VIB	VIIB		VIII		IB.	IIB.	26.9815	28.0855	30.9738	32.06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As'	Se	Br	Kr
39.0983	40.08	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65.39	69.72	72.59	74.9216	78.69	79.904	83.80
37	38	39	40	41	42	43	44	45	_46 .	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.4678	87.62	88.9059	91.224	\$2,9064	95.94	(98)	101.97	102.906	106.42	107.868	112.41	114.82	118.71	121.75	127.60	126.905	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	lr .	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.905	137.33	138.906	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.980	208.9824	209.9871	222.0176
87	88	89	104 a	105 a	106 a	107 a	108 a	109 a									
Fr	Ra	AC 4	Una	Unp	Unh	Uns	Uno	Une							1.5		
223.0197	226.025	227.0278	261.1087	262.1138	263.1182	262.1229	-	_									

★ Lanthanide series

▲ Actinide series

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	HO	Er	Tm	Yb	Lu
140.12	140.908	144.24	146.9151	150,34	151.96	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
90 Th 232.038	91 Pa 231.036	92 U 238.029	93 Np 237.048	94 . Pu 244.0642	95 Am 243.0614	96 Cm 247.0703		98 Cf 251.0796	99 Es 252.0829			102 No 259.1009	193 Lr 260.1053

Atomic	237.0482	58.70	92.9064	14.0067	208.1008	15,000.4	1084	3097376	195,09*	244.0642	208 9824	39.0983*	140.9077	146 9151	231 0350	- «	2220178	188 207	102 9055	85.4678*	101.07*	150.4	44.9559	78.96*	28.0855*	107.868	22.98977	87.62	32.06	180.9479*	98.9063	158 0254	204.37*	232 0381	168.9342	118,69*	47.90*	183.85*	263.1182	1	1 000	204.130	2621220	238.029	50.9414*	131.30	173.04*	88.9059	65.38	91,22	ble to ±1 in the	asterisk	
Atomic bol Number	_		14 di	\ \			8		282	Pi 94		σ •	65	. E	8	8 6		22	£ 45	34	₹ 4	_		8	Si 14	Ag 47		38	19	8 73		5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	_	_	E 69		1 22	N 74	_	_		200	100	-	88	Xe 54	Yb 70		2 Zu	7. 6	naidered refla	oliowed by an	
lodmy8 .	Ę				Accellum C		Solleding The Party of the Part	9	Hatinum F	-		٠.	Passochumium F		_	_		Sherium	Shoding .	a Eligidica	ء .			Selenium 8	-,		E	Strontlum S	Sulfur	antalum	€.	Templina 1	_ ,-	•			Ttanlum 1	_		=		_	Indiantina 1	_	/anadium		/tterbium	Yttrium ·		Zirconlum Z	These figures are co	st digit, or ±3 when I	
Atomic Weight N	_	χ.	4	_	740016		_	8	_	_	_	_	_	. 2	_	798		_	_	988	~		ن 8					-	8		15/25 16		988		8	_	1.0079 T	_	2	<u>-</u>	25.847	*		_	414	^	_	_	 @		95.94		-
Atomic	N	ب م	8 1	- -	2 2	3.4	3 %	26	4	83 20		35	48	20.00	86	38		200	12	24	2	ଷ	96	98	8	•	83	180	_ (8	3 5	- S	36	_	N	_		•	63 12	_	20	•	2 6	8	, e	7	2	5 2	5	8	2 6	30	
Sympo	•	_	F	کر در								_				. 5			_	£		3	ဦ	stum Dy	E E	ш	É	n Fr	L'I		ED C	_			f	윈	I E	Ē	_	≥ (23	2 -		. G	_	_	ilum Mg	_	E .	. 1		_	
E	Actinium	Aiuminum	Amencium	Amilimony	Arear	Aetetine	Rading	Berkellur	Beryllium	Bismuth	Boron	Brombe	Cadmium	Capalin	Calclin	Californium	Carpo		Chlorine	Chromium	Copalt	Copper	Curlem	Dysprostum	Einsteinium	Erbirm	Europlum	Fermium	Fluorine	Francium	Gadolinium	Germanian		Hafrium	Hellum	Holmin	Hydrogen	mallam	odine		202	Logbor I	awrenchin	ead	Lithium	Lutetium	Magnesium	Manganese	Mendelevium	Mercury	Molybaenum	Neon	