UNIVERSITY OF SWAZILAND

Department of Chemistry

INTRODUCTORY CHEMISTRY II C112

FINAL EXAM

Second term (semester) 2007-08

Notes:

Do not open this exam until told to do so.

This exam consists of 9 questions:
you are to work three of the first 4 (section I), and
two of the final 5 (section II).

[If you do not work three of the first four, you will lose 20 marks
for each one fewer you do not work:
if you work more than 4, only the first 3 will be marked.

For the total exam, only the first five attempted will be marked.]

Each question is worth 20 marks.

Be sure to indicate on your answer sheets which questions you are answering.

Begin each question on a fresh sheet on your answer scripts.

Show your work and express your answers clearly to the correct number of significant figures.

Non-programmable calculators are permitted to be used.

A periodic chart is included with this exam and some important chemical constants are given below on this page:

$$\begin{split} N_A &= 6.0221367 \times 10^{23} \, \text{items/mol} \\ R &= 8.206 \times 10^{-2} \, \text{(L)(atm)/(mol)(K)} \\ &= 8.314 \, \, \text{J/(mol)(K)} \\ h &= 6.6256 \times 10^{-34} \, \text{(J)(s)} \\ c &= 2.9979 \times 10^8 \, \text{m/s} \end{split}$$

Introductory Chemistry II

C 112

Final Exam

Second term (semester), 2007-08

Section I: Attempt three out of these four problems.

1. A. Write the name of the following compound:

CH₃(CH₂)₃C(CH₃)₂CH

∥ HCCH₃

- B. Write acceptable structures for four isomers of formula C₄H₈O
- C. Write the structure and name for the principal organic product in each of the following reactions:
 - i. 2-propanol + formic (methanoic) acid -
 - ii. cyclohexene + bromine(molecular) →
 - iii. 3-ethyl-3-pentanol + {heat and acid} →
 - iv. 3-hexene + hydrogen chloride →
 - v. bromomethane + hydroxide ion -
 - vi. 6-methylnonanal + {oxidizing agent} →
- D. Write a complete balanced equation for the complete combustion of 1,4-dimethylbenzene
- E. Indicate which one of each of the following pairs of substances would be expected to have the higher boiling point:
 - i. octane or cyclohexane

ii. sodium acetate or ethyl acetate

iii. butanol or diethyl ether

iv. silver or butanoic acid

v. benzene or argon

vi. carbon_(dianmond) or 1,3,5.7-tetrapropylcyclodecane

- 2. A. Consider the equilibrium: $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$ When 0.600 mol of N_2 and 1.800 mol of H_2 were placed in an otherwise empty 1.00 liter vessel at a certain specified temperature, and allowed to react, it was found that the <u>equilibrium</u> concentration of NH₃ was 0.048 M. Calculate the value of K_c for this reaction.
 - B. At 350°C, $K_c = 70$ for the equilibrium: $H_{2(g)} + I_{2(g)} \rightleftharpoons 2HI_{(g)}$ At <u>equilibrium</u>, the concentration of HI is found to be 1.32 M and that of H_2 is 0.100 M. Calculate the <u>equilibrium</u> concentration of I_2 .
 - C. At a certain high temperature, 3.00 moles each of gaseous iodine and gaseous hydrogen were introduced into an otherwise empty 1.00 L container—they reacted with each other and were allowed to come to equilibrium with the one product, gaseous hydrogen iodide [the same reaction as in part B, above]. At this temperature K_c = 16. Calculate the equilibrium concentration of all reactants and products.

3. The following data apply to the reaction between A, B, and C at a constant temperature:

exp	[A] ₀	[B] ₀	[C]。	$R_o (M/s)$
1	0.020 M	0.030 M	0.020 M	0.0398
2	0.060 M	0.030 M	0.020 M	0.119
3	0.060 M	0.060 M	0.020 M	0.476
4	0.020 M	0.030 M	0.040 M	0.0401
5	0.050 M	0.050 M	0.050 M	(??)

- A. Derive the <u>informed</u> rate law including the orders of reaction and the value of the *rate* constant, for this reaction.
- B. Calculate the initial rate for experiment #5.
- C. What, if anything, would increase the rate constant of a particular reaction?
- 4. A. Calculate the pH of each of the following solutions:
 - i. a 0.12 M solution of HNO₃ (nitric acid)
 - ii. a 0.020 M solution of Ba(OH)₂ (barium hydroxide)
 - iii. a 0.24 M solution of CH₃COOH (acetic acid)
 - iv. a 0.48 M solution of NH₃ (ammonia)
 - B. If it takes 48.64 milliliters of a 0.200 M solution of NaOH to exactly neutralize 25.37 milliliters of a hydrochloric acid solution, calculate the molarity of the hydrochloric acid solution.
 - C. Reconstruct the following grid on your scripts sheets and fill in the blanks.

solution	pН	[H ⁺]	[OH ⁻]	рОН	acidic/basic?
#1				4.44	
				4.37	
#2		$5.0 \times 10^{-10} M$			
#3			$3.8 \times 10^{-3} M$		

- D. Write the conjugate acid of water and the conjugate base of acetic acid.
- E. Aqueous solutions of which of the following would be basic and which would be acidic?
 - i. NaCl
- ii. CoCl₂
- iii. ethanol
- iv. KCN
- v. NH₄NO₃
- vi. trimethylamine

Section II; Attempt two of the following problems. [Your choice]

- 5. A. Calculate the solubility (in moles per liter), of PbCl₂ in pure water. The K_{sp} of PbCl₂ is 2.4 x 10⁻⁴
 - B. Calculate the K_{sp} of Ag₂SO₄ which has a solubility of 1.5 x 10⁻² M in pure water.
 - C. Calculate the solubility of Ag₂SO₄ in a 0.040 M solution of Na₂SO₄.
 - D. For a solution containing both silver and lead aqueous ions, both at a concentration of 0.10M, make calculations to predict which salt would be expected to precipitate first if a 0.010M solution of NaCrO₄ were slowly added to that solution. The K_{sp} of PbCrO₄ is 1.8 x 10^{-14} and that of Ag_2CrO_4 is 1.1 x 10^{-12} .
- **6**. A. Calculate the energy of activation of a reaction which has rate constants of 6.82×10^{-3} M/s at 37° C and 9.88×10^{-2} M/s at 127° C.
 - B. Draw the potential energy diagram (graph) for this reaction which has an *enthalpy* of reaction of -30.6 kJ. Clearly indicate all quantities and label all other parts of the graph.
 - C. This reaction (in parts A & B, above) can be shown this way: $2X_{(g)} + Y_{(g)} \rightleftharpoons 3Z_{(g)}$ Which way will the equilibrium shift if

i. some Z is added?

ii. some Y is removed?

iii. the reaction is cooled down?

iv. 0.10 mole X is added and 0.10 mole Z is removed?

v. the volume is increased?

vi. a catalyst is added?

- 7. A. Calculate the number of milliliters of 0.20 M KOH it will require to just neutralize 25.0 mL of 0.50 M acetic acid.
 - B. For the titration of 25.0 mL of 0.500 M acetic acid with 0.200 M KOH, calculate the pH i. initially ii. at the ½-way point iii. at the stoichometric (equilvalence) point
 - C. Sketch the pH titration curve for the titration in part B
- 8. A. Write the Lewis electron dot structure for methyl formate [HCO₂CH₃] and indicate the shape and bond angles around each central atom and the hybridization for each non-hydrogen atom.
 - B. Write the Lewis structure of propyne and indicate what kinds of atomic orbitals are overlapping for each carbon-carbon bond.
 - C. Write the electronic configuration for the tin (IV) ion and then write the Lewis structure for tin (IV) sulfate
 - D. Indicate the VSEPR shape of each central atom of the conjugate acid of methylamine.
- 9. A. A buffer solution is prepared by dissolving 1.00 mol HC₂H₃O₂ (acetic acid) and 0.500 mol NaC₂H₃O₂ (sodium acetate) in enough water to make 1.00 liter of solution. Calculate the pH of the solution.
 - B. Calculate the resulting pH when 0.20 moles of HCl is added per liter of the buffer solution in part B—assuming no volume change.

Periodic Chart of the Elements

1					_												18
Group			'														
LA.																	VIIIA
1 1	2											13	14	15	16	17	2
H	`.											IIIB	₩	VB	VIB	VIIIB	He
1.0079	RA											RLA .	IVA	VA	VIA	VILA	4.00260
3	4	ł										5	6	7	8	9	10
Li	Be											В	C	N.	0	F	Ne
6.941	9.81218											10.81	12.011	14.0067	15.9994	18.9984	20.179
11	12	3	4	. 5	. 6	7	8	9	10	11	12	13	14	15	16	17	18
Na	Mg	ELA	IVA	VA	VIA	VIIA	Ψ.	VIIIA		•••		Al	Si	P	S	CI	Ar
22.9898	24.305	#IB	IVB	VB	VIB	VIIB	·	VIII		1B	IIB	26.9815	28.0855	30.9738	32,06	35.453	39.948
19	20	21	22	23	24	25	26	27	28	29	30	31	. 32	33	34	35	√36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As [·]	Se	Br	Kr
39.0983	40.06	44.9559	47.88	50.9415	51.996	54.9380	55.847	58.9332	58.69	63.546	65,39	59.72	72.59	74.9216	78.69	79.904	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.4678	87.62	88.9059	91.224	92,9064	95.94	(98)	101.87	102.906	186.42	107.868	112.41	114.82	118.71	121.75	127.60	126.905	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	ŤI	Pb	Bi	Po	Ăt	Rn
132,905	137.33	138.906	178.49	180.948	183.85	186.207	190.2	192,22	195.08	196.967	200.59	204.383	207.2	208.980	208,9824	209.9871	222.0176
87	88	89	104	105 .	106 a	107	108	109 a	130.00	1.50.507	100.03						
Fr	Ra	Ac 4	lina	ı •	Unh	Uns											
223.0197	226.025	227.0278	261,1087	Unp 262.1138			Olio	Oile							٠.		
220.013/	550.053	221,3210	201.100/	202.1136	203.1102	2021223											

★ Lanthanide

58 Ce 140.12	59 Pr 140.908		61 Pm 146.9151	63 Eu 151.96	64 Gd 157.25	Tb 158.925	Dy 162.50	67 HO 164.938	68 Er 167.26	69 Tm 168.934	70 Yb 173.04	71 Lu 174.967
90 Th 232.038	91 Pa 231.636	92 U 238.029	93 Np 237.048			97 Bk 247.0703	98 Cf 251.8796			101 Md 258.0986		

▲ Actinide