UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2007/8 TITLE OF PAPER: INTRODUCTORY CHEMISTRY I **COURSE NUMBER: C111** TIME: THREE (3) HOURS ### **INSTRUCTIONS:** There are six questions. Each question is worth 25 marks. Answer any four questions. Non-programmable electronic calculators may be used. DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR. ### Question 1 (25marks) - a) Explain in molecular terms why the pressure of a gas increases with increasing temperature when the volume is held constant. [3] - b) A quantity of N₂ gas originally held at 4.75 atm pressure in a 1.00 L container at 26 °C is transferred into a 10.0 L container at 20 °C. A quantity of O₂ gas originally at 5.25 atm and 26 °C in a 5.00 L container is transferred to the same container. - (i) Calculate the partial pressures of N₂ and O₂ in the new container. - (ii) Calculate the total pressure. [6] - c) Vessel A contains CO(g) at 0 °C and 1 atm. Vessel B contains SO₂(g) at 20 °C and 0.5 atm. The two vessels have the same volume. - (i) Which vessel contains more molecules? - (ii) Which contains more mass? - (iii) In which vessel is the average kinetic energy of the molecules higher? [6] - d) Hexane burns according to the following equation: - $2 C_6 H_{14}(g) + 19 O_2(g) \rightarrow 12 CO_2(g) + 14 H_2O(g)$ - (i) What volume of CO₂ will be formed by burning 9.00 L hexane, with the two volumes being measured under the same conditions? - (ii) What volume of oxygen will be needed? [5] e) Copper oxide can be reduced to copper metal by heating in a stream of hydrogen gas: $$CuO(s) + H_2(g) \xrightarrow{\Delta} Cu(s) + H_2O(l)$$ What volume of hydrogen at 27 °C and 722 Torr would be required to react with 95.0 g of CuO? [5] ### Question 2 (25 marks) - a) Distinguish between theoretical yield, actual yield and percent yield. - b) Phenol (C₆H₅OH), often used as a disinfectant in stables and drains is a common water pollutant. It can be converted to less harmful oxalic acid (H₂C₂O₄) by reaction with ozone: $$C_6H_5OH + 11 O_3 \rightarrow 3 H_2C_2O_4 + 11 O_2$$ - (i) What mass of ozone would be required to react with 125.0 g of phenol? - (ii) What mass of oxalic acid would be produced? [7] [3] c) Cadmium hydroxide, used in storage battery electrodes, is prepared by precipitation from a solution containing cadmium chloride and potassium hydroxide: $$CdCl_2(aq) + 2 KOH(aq) \rightarrow Cd(OH)_2(s) + 2 KCl(aq)$$ What mass of cadmium hydroxide could be prepared from 125 mL of 0.250 M CdCl₂ mixed with 125 mL of 0.450 M KOH? [7] d) Oxygen difluoride can be prepared by bubbling gaseous fluorine into 0.5 M solution of NaOH: $$2 F_2(g) + 2 NaOH(aq) \rightarrow OF_2(g) + 2NaF(aq) + H_2O(1)$$ Oxygen difluoride can be used to prepare compounds such as O_2AsF_6 , containing the dioxygen cation, O_2^+ , by the following reaction: $$4 \text{ OF}_2 + 2 \text{ AsF}_5 \rightarrow 2 \text{ O}_2 \text{AsF}_6 + 3 \text{F}_2$$ If 14.0 g F₂ is bubbled through 650 mL of 0.500 M NaOH to prepare OF₂ with a 78.0% yield, how many grams of O₂AsF₆ can be prepared? [8] ### Question 3 (25 marks) - a) (i) What is the frequency of gamma rays having a wavelength 2.00 x 10⁻⁵ nm? (ii) What is the energy (in kJ/mol) of this radiation? [5] - b) Calculate the wavelength of a proton of mass 1.67×10^{-24} g having a velocity of 1.80×10^8 cm/s. [3] - c) For Cl in its ground state, indicate how many electrons have each of the following quantum number values: (i) $$n = 2$$ (ii) $l = 3$ (iii) $m_l = 0$ (iv) $n = 2$ $m_s = \frac{1}{2}$ (v) $l = 1$ $m_l = -1$ (vi) $n = 1$ $l = 0$ [6] - d) Write the electron configurations of the following species (i) Sb (ii) Cr²⁺ (iii) C⁴ (iv) S [8] - e) Identify the atom represented by the following electron configuration (i) [Ar]4s²3d¹ (ii) [Kr] 5s²4d¹⁰5p⁵ (iii) 1s²2s²2p⁶3s²3p⁶4s¹. [3] ### Question 4 (25 marks) - a) Arrange the following species in order of increasing size. In each case give a brief explanation: - (i) - C, N, S, O Fe²⁺, Fe³⁺ (ii) - Br, Cl, I, F [6] (iii) - b) Which of each pair should have the greater first ionization energy? Justify your choice: (i) O or F (ii) Si or Ge (iii) N or O - c) Arrange the following species in order of increasing (more negative) electron affinity: O, S, Se, Cl. Explain briefly. [3] - d) Which element should be more reactive, O or S? Explain your answer. [3] - e) Name an element that can be classified as a member of each of the following groups: (i) noble gases (ii) alkali metals (iv) nonmetals (iii) halogens - (v) transition metals (vii) alkaline earth metals (vi) metalloids [7] ### Question 5 (25 marks) - a) Define the terms (i) specific heat capacity (ii) molar heat capacity. [3] - b) Metallic copper can be produced from copper(II) oxide by the reaction with hydrogen: CuO(s) + $$H_2(g) \rightarrow Cu(s) + H_2O(l)$$ $\Delta H^0 = -128.8 \text{ kJ}$ If the standard enthalpy of formation of liquid water is -285.83 kJ/mol, what is the standard enthalpy of formation of copper(II) oxide? [4] c) Calculate the heat evolved from a reaction mixture of 13.4 L of sulphur dioxide at 1.00 atm and 273 K and 15.0 g oxygen in the reaction $$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$ $\Delta H^0 = -198 \text{ kJ}$ [8] d) Dinitrogen tetroxide reacts with carbon monoxide to form carbon dioxide and a gaseous oxide of nitrogen, which contains 63.65% N and 36.35% O by mass. Known enthalpies of formation are: | Compound | ΔH _f °, kJ/mol | | | | | |-------------|---------------------------|--|--|--|--| | $N_2O_4(g)$ | 9.7 | | | | | | CO(g) | -110 | | | | | | $CO_2(g)$ | -393 | | | | | Under standard conditions, reaction of a mixture of 40.35 g N_2O_4 and 51.16 g CO in a calorimeter raised the temperature of 3255.0 g water by 25.09 °C. The specific heat of water is 4.184 J g⁻¹ °C⁻¹. - (i) Determine the formula of the oxide of nitrogen and name it. - (ii) Write a balanced equation for the reaction. - (iii) Determine how much of the oxide of nitrogen is formed. - (iv) How much heat is produced by the reaction? - (v) Calculate the standard heat of formation of the oxide of nitrogen. [10] ### Question 6 (25 marks) - a) Write a complete balanced equation for each of the following reactions: - (i) When solid sodium hydride is added to water, hydrogen gas is released and aqueous sodium hydroxide is formed - (ii) Solid calcium phosphate reacts with a mixture of solid silicon dioxide and solid carbon to form solid phosphorus, solid calcium silicate and gaseous carbon monoxide. [6] [5] b) Copy the following table and fill in the gaps | Symbol | $^{75}As^{3-}$ | | | | |------------|----------------|----|----|-----| | Protons | | 28 | 53 | | | Neutrons | | 31 | 74 | 118 | | Electrons | | 26 | | 76 | | Net Charge | | | -1 | 3+ | c) Give the name or chemical formula, as appropriate of the following compounds (i) cobalt(III) sulphate (ii) HClO₃(aq) (iii) sulphurous acid (iv) barium carbonate (v) ICl₃ (vi) S₂Cl₂ (vii) magnesium hydrogen carbonate (viii) MnO₂ d) Which element is oxidized and which is reduced in the following reactions? (i) Cd(s) + 2 AgCl(s) → Cd²+(aq) + 2Ag(s) + 2 Cl⁻(aq) (ii) 2 Fe³+(aq) + 2 Hg(l) + 2Cl⁻(aq) → 2 Fe²+(aq) + Hg₂Cl₂(s) $2Na(s) + S(s) \rightarrow Na_2S(s)$ (iii) ## The end [6] # General data and fundamental constants | Quantity | Symbol | Value | |-------------------------|---|---| | Speed of light | c | 2.997 924 58 X 10 ⁸ m s ⁻¹ | | Elementary charge | е | 1.602 177 X 10 ⁻¹⁹ C | | Faraday constant | $F = N_A e^{-}$ | 9.6485 X 10 ⁴ C mol ⁻¹ | | Boltzmann constant | k | 1.380 66 X 10 ⁻²³ J K ⁻¹ | | Gas constant | $R = N_A k$ | 8.314 51 J K ⁻¹ mol ⁻¹ | | | | 8.205 78 X 10 ⁻² dm³ atm K ⁻¹ mol ⁻¹ | | | | 6.2364 X 10 L Torr K ⁻¹ mol ⁻¹ | | Planck constant | h | 6.626 08 X 10 ⁻³⁴ J s | | | $\hbar = h/2\pi$ | 1.054 57 X 10 ⁻³⁴ J s | | Avogadro constant | N_A | 6.022 14 X 10 ²³ mol ⁻¹ | | Atomic mass unit | u | 1.660 54 X 10 ⁻²⁷ Kg | | Mass | | | | electron | m_{e} | 9.109 39 X 10 ⁻³¹ Kg | | proton | m_p | 1.672 62 X 10 ⁻²⁷ Kg | | neutron | m_n | 1.674 93 X 10 ⁻²⁷ Kg | | Vacuum permittivity | $\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$ | 8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹ | | | 4πε _ο | 1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹ | | Vacuum permeability | μ_{\circ} | $4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$ | | | | $4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$ | | Magneton | | | | Bohr | $\mu_{\rm B} = {\rm e}\hbar/2{\rm m}_{\rm e}$ | 9.274 02 X 10 ⁻²⁴ J T ⁻¹ | | nuclear | $\mu_N = e\hbar/2m_p$ | 5.050 79 X 10 ⁻²⁷ J T ⁻¹ | | g value | <i>ge</i> | 2.002 32 | | Bohr radius | $a_o = 4\pi \varepsilon_o \hbar/m_e e^2$ | 5.291 77 X 10 ⁻¹¹ m | | Fine-structure constant | $\alpha = \mu_o e^2 c/2h$ | 7.297 35 X 10 ⁻³ | | Rydberg constant | $R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$ | 1.097 37 X 10 ⁷ m ⁻¹ | | Standard acceleration | | | | of frée fall | g | 9.806 65 m s ⁻² | | Gravitational constant | G | 6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻² | | | | | # Conversion factors | 1 cal = 4.184 joules (J)
$1 \text{ eV} = 1.602 2 \text{ X } 10^{-19} \text{ J}$ | | 1 erg | | | = | 1 X 10 ⁻⁷ J
96 485 kJ mol ⁻¹ | | | | | | |--|-------|-------|--------------------------------|------|-------|---|-------|------|------|------------------------------|------------------| | Prefix | ces - | femto | p
pico
10 ⁻¹² | nano | micro | milli | centi | deci | kilo | M
mega
10 ⁶ | G
giga
10° | # PERIODIC TABLE OF ELEMENTS | 7 | 6 | υ | 4 | 3 | 2 | - | PERIODS | |----------------------------|-----------------------------|----------------------------|---------------------------|---------------------|---|-------------|----------------------| | 223
Fr
87 | 132.91
Cs
55 | 85.468
Rb
37 | 39.098
K
19 | 22.990
Na
11 | 6.941
Li
3 | 1.008
11 | | | 226.03
Ra
88 | 137.33
Ba
56 | 87.62
Sr
38 | 40.078
Ca
20 | 24.305
Mg
12 | 9.012
Be
4 | | 2 | | (227)
***Ac
89 | 138.91
* La
57 | 88.906
Y
39 | 44.956
Sc
21 | | | | 3
IIIB | | (261)
Rf
104 | 178.49
Hf
72 | 91.224
Zr
40 | 47.88
Ti
22 | | | | IVB | | (262)
Ha
105 | 180.95
Ta
73 | 92.906
Nb
41 | 50.942
V
23 | | | | 5
VB | | (263)
Unh
106 | 183.85
W
74 | 95.94
Mo
42 | 51.996
Cr
24 | TRAN | | | 6
VIB | | (262)
Uns
107 | 186.21
Rc
75 | 98.907
Tc
43 | 54.938
Mn
25 | TRANSITION ELEMENTS | | | 7
VIIB | | (265)
Uno
108 | 190.2
Os
76 | 101:07
Ru
44 | 55.847
Fc
26 | ELEM | | | 8
G | | (266)
Une
109 | , , | 102.91
Rli
45 | 58.933
Co
27 | ENTS | | | GROUPS
9
VIIIB | | (267)
Uun
110 | 195.08
Pt
78 | 106.42
Pd
46 | 58.69
Ni
28 | | | | 10 | | | 196.97
Au
79 | 107.87
Ag
47 | 63.546
Cu
29 | | Atomic mass
Symbol
Atomic No. | | 1B | | | 200.59
Hg
80 | | 1 . | | Atomic mass - 10.81 Symbol B Atomic No. 5 | | 12
IIB | | | 204.38
T1
81 | 114.82
In
49 | 69.723
Ga
31 | 26.982
AI
13 | + B
5 | | 13 | | | 207.2
Pb
82 | Sn
50 | 72.61
Ge
32 | 28.086
Si
14 | 12.011
C
6 | | 14
IVA | | | 208.98
Bi
83 | 121.75
Sb
51 | 74.922
As
33 | 30.974
P
15 | 14.007
N
7 | | 15
VA | | | (209)
Po
84 | 127.60
Te
52 | 78.96
Sc
34 | 32.06
S
16 | O
8 | | VIA
VIA | | | (210)
At
85 | 126.90
I
53 | 79.904
Br
35 | 35.453
CI
17 | 18.998
F
9 | | VIIA | | | (222)
Rn
86 | 131.29
Xc
54 | 83.80
Kr
36 | 39.948
Ar
18 | ~ Nc
10 | IIc
2 | VIIIA | 232.04 Th 90 238.03 U 92 237.05 **Np** 93 (244) Pu 94 (243) **Am** 95 (247) Cm 96 *Lanthanide Series 140.12 Cc 58 Nd 80 (145) **Pm** 61 150.36 Sm 62 151.96 **Eu** 63 157.25 **Gd** 64 158.93 **Tb** . 65 162.50 **Dy** 66 164.93 **Ho** 168.93 **Tm** 69 173.04 **Yb** 70 174.97 Lu 71 167.26 **Er** (247) **Bk** 97 (251) Cf 98 (252) Es 99 (257) Fm 100 (258) **Md** 101 (259) No 102 (260) Lr J03 140.91 ** Actinide Series 231.04 () indicates the mass number of the isotope with the longest half-life.