UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2007/8

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25marks)

- a) Explain in molecular terms why the pressure of a gas increases with increasing temperature when the volume is held constant. [3]
- b) A quantity of N₂ gas originally held at 4.75 atm pressure in a 1.00 L container at 26 °C is transferred into a 10.0 L container at 20 °C. A quantity of O₂ gas originally at 5.25 atm and 26 °C in a 5.00 L container is transferred to the same container.
 - (i) Calculate the partial pressures of N₂ and O₂ in the new container.
 - (ii) Calculate the total pressure.

[6]

- c) Vessel A contains CO(g) at 0 °C and 1 atm. Vessel B contains SO₂(g) at 20 °C and 0.5 atm. The two vessels have the same volume.
 - (i) Which vessel contains more molecules?
 - (ii) Which contains more mass?
 - (iii) In which vessel is the average kinetic energy of the molecules higher?

[6]

- d) Hexane burns according to the following equation:
 - $2 C_6 H_{14}(g) + 19 O_2(g) \rightarrow 12 CO_2(g) + 14 H_2O(g)$
 - (i) What volume of CO₂ will be formed by burning 9.00 L hexane, with the two volumes being measured under the same conditions?
 - (ii) What volume of oxygen will be needed?

[5]

e) Copper oxide can be reduced to copper metal by heating in a stream of hydrogen gas:

$$CuO(s) + H_2(g) \xrightarrow{\Delta} Cu(s) + H_2O(l)$$

What volume of hydrogen at 27 °C and 722 Torr would be required to react with 95.0 g of CuO? [5]

Question 2 (25 marks)

- a) Distinguish between theoretical yield, actual yield and percent yield.
- b) Phenol (C₆H₅OH), often used as a disinfectant in stables and drains is a common water pollutant. It can be converted to less harmful oxalic acid (H₂C₂O₄) by reaction with ozone:

$$C_6H_5OH + 11 O_3 \rightarrow 3 H_2C_2O_4 + 11 O_2$$

- (i) What mass of ozone would be required to react with 125.0 g of phenol?
- (ii) What mass of oxalic acid would be produced?

[7]

[3]

c) Cadmium hydroxide, used in storage battery electrodes, is prepared by precipitation from a solution containing cadmium chloride and potassium hydroxide:

$$CdCl_2(aq) + 2 KOH(aq) \rightarrow Cd(OH)_2(s) + 2 KCl(aq)$$

What mass of cadmium hydroxide could be prepared from 125 mL of 0.250 M CdCl₂ mixed with 125 mL of 0.450 M KOH? [7]

d) Oxygen difluoride can be prepared by bubbling gaseous fluorine into 0.5 M solution of NaOH:

$$2 F_2(g) + 2 NaOH(aq) \rightarrow OF_2(g) + 2NaF(aq) + H_2O(1)$$

Oxygen difluoride can be used to prepare compounds such as O_2AsF_6 , containing the dioxygen cation, O_2^+ , by the following reaction:

$$4 \text{ OF}_2 + 2 \text{ AsF}_5 \rightarrow 2 \text{ O}_2 \text{AsF}_6 + 3 \text{F}_2$$

If 14.0 g F₂ is bubbled through 650 mL of 0.500 M NaOH to prepare OF₂ with a 78.0% yield, how many grams of O₂AsF₆ can be prepared? [8]

Question 3 (25 marks)

- a) (i) What is the frequency of gamma rays having a wavelength 2.00 x 10⁻⁵ nm? (ii) What is the energy (in kJ/mol) of this radiation? [5]
- b) Calculate the wavelength of a proton of mass 1.67×10^{-24} g having a velocity of 1.80×10^8 cm/s. [3]
- c) For Cl in its ground state, indicate how many electrons have each of the following quantum number values:

(i)
$$n = 2$$
 (ii) $l = 3$ (iii) $m_l = 0$ (iv) $n = 2$ $m_s = \frac{1}{2}$ (v) $l = 1$ $m_l = -1$ (vi) $n = 1$ $l = 0$ [6]

- d) Write the electron configurations of the following species
 (i) Sb (ii) Cr²⁺ (iii) C⁴ (iv) S [8]
- e) Identify the atom represented by the following electron configuration
 (i) [Ar]4s²3d¹ (ii) [Kr] 5s²4d¹⁰5p⁵ (iii) 1s²2s²2p⁶3s²3p⁶4s¹. [3]

Question 4 (25 marks)

- a) Arrange the following species in order of increasing size. In each case give a brief explanation:
 - (i)
 - C, N, S, O Fe²⁺, Fe³⁺ (ii)
 - Br, Cl, I, F [6] (iii)
- b) Which of each pair should have the greater first ionization energy? Justify your choice: (i) O or F (ii) Si or Ge (iii) N or O
- c) Arrange the following species in order of increasing (more negative) electron affinity: O, S, Se, Cl. Explain briefly. [3]
- d) Which element should be more reactive, O or S? Explain your answer. [3]
- e) Name an element that can be classified as a member of each of the following groups: (i) noble gases (ii) alkali metals (iv) nonmetals (iii) halogens
 - (v) transition metals (vii) alkaline earth metals (vi) metalloids [7]

Question 5 (25 marks)

- a) Define the terms (i) specific heat capacity (ii) molar heat capacity. [3]
- b) Metallic copper can be produced from copper(II) oxide by the reaction with hydrogen:

CuO(s) +
$$H_2(g) \rightarrow Cu(s) + H_2O(l)$$
 $\Delta H^0 = -128.8 \text{ kJ}$

If the standard enthalpy of formation of liquid water is -285.83 kJ/mol, what is the standard enthalpy of formation of copper(II) oxide? [4]

c) Calculate the heat evolved from a reaction mixture of 13.4 L of sulphur dioxide at 1.00 atm and 273 K and 15.0 g oxygen in the reaction

$$2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$$
 $\Delta H^0 = -198 \text{ kJ}$ [8]

d) Dinitrogen tetroxide reacts with carbon monoxide to form carbon dioxide and a gaseous oxide of nitrogen, which contains 63.65% N and 36.35% O by mass. Known enthalpies of formation are:

Compound	ΔH _f °, kJ/mol				
$N_2O_4(g)$	9.7				
CO(g)	-110				
$CO_2(g)$	-393				

Under standard conditions, reaction of a mixture of 40.35 g N_2O_4 and 51.16 g CO in a calorimeter raised the temperature of 3255.0 g water by 25.09 °C. The specific heat of water is 4.184 J g⁻¹ °C⁻¹.

- (i) Determine the formula of the oxide of nitrogen and name it.
- (ii) Write a balanced equation for the reaction.
- (iii) Determine how much of the oxide of nitrogen is formed.
- (iv) How much heat is produced by the reaction?
- (v) Calculate the standard heat of formation of the oxide of nitrogen. [10]

Question 6 (25 marks)

- a) Write a complete balanced equation for each of the following reactions:
 - (i) When solid sodium hydride is added to water, hydrogen gas is released and aqueous sodium hydroxide is formed
 - (ii) Solid calcium phosphate reacts with a mixture of solid silicon dioxide and solid carbon to form solid phosphorus, solid calcium silicate and gaseous carbon monoxide. [6]

[5]

b) Copy the following table and fill in the gaps

Symbol	$^{75}As^{3-}$			
Protons		28	53	
Neutrons		31	74	118
Electrons		26		76
Net Charge			-1	3+

c) Give the name or chemical formula, as appropriate of the following compounds

(i) cobalt(III) sulphate
(ii) HClO₃(aq)
(iii) sulphurous acid
(iv) barium carbonate
(v) ICl₃
(vi) S₂Cl₂
(vii) magnesium hydrogen carbonate
(viii) MnO₂

d) Which element is oxidized and which is reduced in the following reactions?

(i) Cd(s) + 2 AgCl(s) → Cd²+(aq) + 2Ag(s) + 2 Cl⁻(aq)
(ii) 2 Fe³+(aq) + 2 Hg(l) + 2Cl⁻(aq) → 2 Fe²+(aq) + Hg₂Cl₂(s)

 $2Na(s) + S(s) \rightarrow Na_2S(s)$

(iii)

The end

[6]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e^{-}$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_{e}	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{\rm B} = {\rm e}\hbar/2{\rm m}_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	<i>ge</i>	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of frée fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 4.184 joules (J) $1 \text{ eV} = 1.602 2 \text{ X } 10^{-19} \text{ J}$		1 erg			=	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹					
Prefix	ces -	femto	p pico 10 ⁻¹²	nano	micro	milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

7	6	υ	4	3	2	-	PERIODS
223 Fr 87	132.91 Cs 55	85.468 Rb 37	39.098 K 19	22.990 Na 11	6.941 Li 3	1.008 11	
226.03 Ra 88	137.33 Ba 56	87.62 Sr 38	40.078 Ca 20	24.305 Mg 12	9.012 Be 4		2
(227) ***Ac 89	138.91 * La 57	88.906 Y 39	44.956 Sc 21				3 IIIB
(261) Rf 104	178.49 Hf 72	91.224 Zr 40	47.88 Ti 22				IVB
(262) Ha 105	180.95 Ta 73	92.906 Nb 41	50.942 V 23				5 VB
(263) Unh 106	183.85 W 74	95.94 Mo 42	51.996 Cr 24	TRAN			6 VIB
(262) Uns 107	186.21 Rc 75	98.907 Tc 43	54.938 Mn 25	TRANSITION ELEMENTS			7 VIIB
(265) Uno 108	190.2 Os 76	101:07 Ru 44	55.847 Fc 26	ELEM			8 G
(266) Une 109	, ,	102.91 Rli 45	58.933 Co 27	ENTS			GROUPS 9 VIIIB
(267) Uun 110	195.08 Pt 78	106.42 Pd 46	58.69 Ni 28				10
	196.97 Au 79	107.87 Ag 47	63.546 Cu 29		Atomic mass Symbol Atomic No.		1B
	200.59 Hg 80		1 .		Atomic mass - 10.81 Symbol B Atomic No. 5		12 IIB
	204.38 T1 81	114.82 In 49	69.723 Ga 31	26.982 AI 13	+ B 5		13
	207.2 Pb 82	Sn 50	72.61 Ge 32	28.086 Si 14	12.011 C 6		14 IVA
	208.98 Bi 83	121.75 Sb 51	74.922 As 33	30.974 P 15	14.007 N 7		15 VA
	(209) Po 84	127.60 Te 52	78.96 Sc 34	32.06 S 16	O 8		VIA VIA
	(210) At 85	126.90 I 53	79.904 Br 35	35.453 CI 17	18.998 F 9		VIIA
	(222) Rn 86	131.29 Xc 54	83.80 Kr 36	39.948 Ar 18	~ Nc 10	IIc 2	VIIIA

232.04 Th 90 238.03 U 92 237.05 **Np** 93 (244) Pu 94 (243) **Am** 95 (247) Cm 96 *Lanthanide Series

140.12 Cc 58

Nd 80

(145) **Pm** 61

150.36 Sm 62

151.96 **Eu** 63

157.25 **Gd** 64

158.93 **Tb** . 65

162.50 **Dy** 66

164.93 **Ho**

168.93 **Tm** 69

173.04 **Yb** 70

174.97 Lu 71

167.26 **Er**

(247) **Bk** 97

(251) Cf 98

(252) Es 99

(257) Fm 100

(258) **Md** 101

(259) No 102

(260) Lr J03

140.91

** Actinide Series

231.04

() indicates the mass number of the isotope with the longest half-life.