UNIVERSITY OF SWAZILAND **BACHELOR OF SCIENCE FINAL EXAMINATION 2007** TITLE OF PAPER PHYSICAL CHEMISTRY **COURSE CODE** C402 : TIME 3 HOURS **TOTAL MARKS** 100 MARKS **INSTRUCTIONS** THERE ARE SIX QUESTIONS ANSWER FOUR QUESTIONS ONLY **EACH QUESTION IS 25 WORTH MARKS** : A PERIODIC TABLE AND DATA SHEETS WITH ARE **PROVIDED** **EXAMINATION PAPER** NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF THE EXAMINATION ROOM BEGIN THE ANSWER TO EACH QUESTION ON A SEPARATE SHEET OF PAPER ALL CALCULATIONS/WORKOUT DETAILS SHOULD BE SUBMITTED WITH YOUR ANSWER SHEET(S) DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR. ## Question 1 [25 Marks] a) Using diagrams and equations write short notes to describe the process of effusion. [6] b) Derive the expression for rate of effusion. [8] Rate= $$PA_o/(2\pi mkT)^{1/2}$$ - c) Germanium was introduced into a container and heated to 1000° C. When a hole of radius 0.5 mm was opened for 7200 s, a mass loss of 4.3x10⁻⁵ g was measured. AW(Ge)=72.61 g/mol. - (i) Derive an expression that shows how pressure varies with time [6] - (ii) Calculate the vapour pressure of germanium at 1000°C, assuming it to be monoatomic. [5] ## Question 2 [25 Marks] - a) Write short notes on any Two the following pairs: - i) half life and relaxation time [5] - ii) pseudo first order rate constant [5] - iii) Stopped flow technique [5] use any diagram and/or equation of your choice to illustrate your answer - b) The alkaline hydrolysis of ethyl benzoate at various time gave the following results: | t/ sec | 0 | 100 | 300 | 400 | 500 | 600 | 700 | 800 | |----------------------------|------|--------|--------|--------|--------|--------|--------|--------| | [A]/moles dm ⁻³ | 0.05 | 0.0275 | 0.0225 | 0.0185 | 0.0160 | 0.0148 | 0.0148 | 0.0138 | #### Determine: - i) order of the reaction [5] - ii) rate constant of the reaction [2] - iii) half life, $t_{1/2}$. If $t_{1/2}$ is concentration dependent evaluate it at 0.05 M [3] - c) Show that the integrated rate law for the concurrent reaction: $$A \xrightarrow{k_1} B$$ $$A \xrightarrow{k_2} C$$ where $$k_2 \neq k_1$$ is given by: $$[A]_t = [A]_0 e^{-(k_1 + k_2)t}$$ [5] ### Question 3 [25 Marks] - (a) Write short notes to define the nature and role of enzymes in reaction kinetics. [5] Your notes should include examples to illustrate your points. - (b) Briggs-Haldane equation states $V_0 = \frac{V_m[s]}{K_m + [s]}$ where $V_m = K_2[E]$ - (i) Using the pre-equilibrium approach derive the Briggs Haldane equation: [5] - (ii) The hydrolysis of N-glutaryl-L-phenylalanine p nitroanalide (GPNA) to p-nitro-analine and N-glutaryl-L-phenylalanine is catalysed by α -chymotrypsin $$[E]_0 = 4.0 \times 10^{-6} M$$ Using Lineweaver-Burk plot determine [15] - (a) The maximum attainable reaction rate. - (b) Strength of the Enzyme Subtrate complex. - (c) Vibrational frequency of the Enzyme Subtrate complex. ### Question 4 [25 Marks] - a) Write short notes on any Two of the following: [10] - i) single crystal X-ray diffraction - ii) powder X-ray diffraction - iii) isormorphous replacement and the phase problem - b) Derive the Bragg's equation: [5] $$\sin^2\theta = \frac{\lambda^2}{4a^2} \left(h^2 + k^2 + l^2 \right)$$ c) A powder diffraction photograph of KCl gave lines at the following distances from the center spot when Mo X-rays (λ=10.8 pm) were used in a camera with radius 5.74 cm: 13.2, 18.4, 22.8, 26.2, 29.4, 32.2, 37.2, 39.6, 41.8, 43.8 and 46.0 mm - (i) index the lines [2] - (ii) identify the kind of unit cell [2] - (iii) determine the size of the unit cell [4] - (iv) Determine the packing efficiency of the unit cell [2] # Question 5 [25 Marks] - a) i) Write an expression for flux of heat according to Ficks Law. [2] - Evaluate the rate of heat conduction through a window of 1.0 cm² from two surfaces separated by 0.50 cm of air such that the temperature difference is 2.5°C. The thermal conductivity coefficient of air is 0.0242 JKm⁻¹s⁻¹. [4] - Viscosity of liquids flowing in a Ostwald viscometer is given by: (b) $$\eta = \frac{\pi R^4 \Delta P t}{8Vl}$$ - Sketch the Ostwald and Ubbelodhe viscometers. Comment on the use of these (i) viscometers in viscosity measurements. [4] - The time required for water and methanol to drain were 42.6 s and 64.5 and that their densities are 0.9982 g/ml (water) and 0.789 g/ml (methanol), respectively. The viscosity of methanol is 1.2x10⁻³Pa s. Determine the viscosity of water. [5] - Given the distribution function for the flow of particles in liquids: b) $$F(x) = \frac{exp\left(-x^2/4Dt\right)}{\sqrt{\pi Dt}}$$ $F(x) = \frac{exp(-x^2/4Dt)}{\sqrt{\pi Dt}}$ Find expressions for root mean square distance in one dimension (i) $$\left\langle x^2 \right\rangle^{1/2} = \sqrt{2Dt} \qquad [4]$$ - The diffusion coefficient of a molecule MH₂Cl₂ in octane at 24.8°C is 5x10⁻¹⁰ m²s⁻¹, estimate the 3-dimensional root mean square displacement, r_{rms}, for the molecule after 2500 seconds. - Give an account on the use of diffusion coefficents in chemistry (iii) | (RT/F) _{298.15K} =2.4789 kJ/mol
(RT/F) _{298.15K} =0.025 693 V
T/K: 100.15 298.15 500.15 1000.15
T/Cm ⁻¹ : 69.61 207.22 347.62 695.13
1mmHg=133.222 N m ⁻²
hc/k=1.438 78x10 ⁻² m K
1 atm | 1 V
V 5 500.15 1000.15
2 347.62 695.13
2 347.62 695.13
1 1 eV
34 J 1.602 189x10 ⁻¹⁹ J 96.485 kJ/mol 8065.5 cm ⁻¹
8 = 1 dm ³
4.184 J 8065.5 cm ⁻² C m potential: | 0.15
5.13
1 cm ⁻¹
1 cm ⁻¹
89x10 ⁻¹⁹ J 0.124x10 ⁻³ eV
kJ/mol 1.9864x10 ⁻²³ J
5.5 cm ⁻¹
5.5 cm ⁻¹
pressure: <i>IPa=INm</i> ⁻² =1Jm ⁻³
pressure: <i>IPa=INm</i> ⁻² =1Jm ⁻³ | | ity ity | c e F=Le K R=Lk h h L or N _{av} u m _e m _p | 2.997 925x10 ⁸ ms ⁻¹ 1.602 19x10 ⁻¹⁹ C 9.648 46x10 ⁴ C mol ⁻¹ 1.380 66x10 ⁻²³ J K ⁻¹ 8.314 41 J K ⁻¹ mol ⁻¹ 8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ 8.205 75x10 ⁻³⁴ Js 6.626 18x10 ⁻³⁴ Js 1.054 59x10 ⁻³⁴ Js 6.022 14x10 ²³ mol ⁻¹ 1.660 54x10 ⁻²⁷ kg 9.109 39x10 ⁻³¹ kg 1.672 62x10 ⁻²⁷ kg 1.674 93x10 ⁻²⁷ kg 1.674 93x10 ⁻¹² J ⁻¹ C ² m ⁻¹ 47x10 ⁻⁷ Js ² C ⁻² m ⁻¹ 9.274 02x10 ⁻²⁷ JT ⁻¹ | |--|--|--|--------------------|------------------------|--|--| | Ĺ | | | THE C | araday constant | F=Le | 9.648 46x10 ⁴ C mol ⁻¹ | | 69.61 | 347.62 | | В | t | k | $1.380 66 \text{x} 10^{-23} \text{ J K}^{-1}$ | | 1mmHg=133.222 N m ⁻² | | | G | as constant | R=Lk | 8.314 41 J K ¹ mol ⁻¹ | | hc/k=1.438 78x10 ⁻² m K | | | | | | 8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹ | | | | 1 cm ⁻¹ | | | | | | | | | eV | lanck constant | h | 6.626 18x10 ⁻³⁴ Js | | 760torr
1 bar | 96.485 kJ/mc
8065.5 cn | í | 0 ⁻²³ J | | | 1.054 59x10 ⁻³⁴ Js | | | | | Α | vogadro constant | L or N _{av} | $6.022\ 14 \times 10^{23}\ mol^{-1}$ | | | | | Α | tomis mass unit | и | $1.66054 \times 10^{-27}\mathrm{kg}$ | | $IL = 1000 \text{ ml} = 1000 \text{cm}^3 =$ | $= 1 dm^3$ | - | E | lectron mass | m _e | $9.109\ 39 \text{x} 10^{-31} \text{kg}$ | | 1 dm = 0.1 m | | | P, | roton mass | m _p | 1.672 62×10 ⁻²⁷ kg | | 1 cal (thermochemical) = 4. | 184 J | | Z | eutron mass | m _n | 1.674 93×10 ⁻²⁷ kg | | dipole moment: 1 Debye = | 3.335 64x10 ⁻³⁰ C ₁ | В | ٧ | tу | $\varepsilon_o = \mu_o^{-1} c^{-2}$ | $8.854\ 188 \times 10^{-12} \text{J}^{-1} \text{C}^{2} \text{m}^{-1}$ | | force: $IN=IJ m^{-1}=Ikgms^{-2}$ | ² =10 ⁵ dyne pressi | $Ire: IPa=INm^{-2}=$ | | ity | μ° | $4\pi \times 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$ | | IJ = I Nm | | | В | ohr magneton | e e | $9.274~02 \times 10^{-24} \text{ JT}^{-1}$ | | power: $1W = 1J s^{-1}$ | poter | ntial: $1V = 1 J C^{-1}$ | | | , | The state of s | | | | | z | Nuclear magneton | $\mu_{\rm N} = e^{2\pi}$ | 5.05079×10°-′ JT°- | | magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻² | =1JCsm ⁻² current: | nt: 1A=1Cs ⁻¹ | | | , , / Zm _p | | | Prefixes: | | AND THE PROPERTY OF PROPER | G | Gravitational constant | G | 6.67259x10 ⁻¹¹ Nm ² kg ⁻² | | p n m m | n c d | k
M | GG | Gravitational | 59 | 9.80665 ms ⁻² | | о тісго | _ |) mega | | acceleration | And the state of t | | | 10 ⁻¹² 10 ⁻⁹ 10 ⁻⁶ 10 ⁻³ | 3 10^{-2} 10^{-1} | 10^3 10^6 | 10 ⁹ B | Bohr radius | a | 5.291 77x10 ⁻¹¹ m |