UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2007

TITLE OF PAPER:

ADVANCED

INORGANIC

CHEMISTRY

COURSE NUMBER:

C401

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A PERIODIC TABLE HAS BEEN PROVIDED WITH THIS EXAMINATION PAPER.

PLEASE DO NOT OPEN THIS PAPER UNTIL AUTHORISED TO DO SO BY THE CHIEF INVIGILATOR.

QUESTION ONE

- (a) Give examples of each of the following reaction types:
 - (i) a reaction of a metal with an organic halide
 - (ii) transmetallation
 - (iii) metathesis.

[3]

- (b) Show with drawings the expected structures of the following cyclooctatetraene (cot) complexes:
 - (i) (cot)Cr(CO)₃.
 - (ii) (cot)Fe(CO)₃.
 - (iii) (cot)PtCl₂.

[3]

- (c) Predict the products of the following reactions:
 - (i) $Os(\eta^5-C_5H_5)_2 + CH_3C(O)Cl \longrightarrow$
 - (ii) LiBu + Fe(η^5 -C₅H₅)₂
 - (iii) $(OC)_5Mn-Mn(CO)_5 + Br_2 \longrightarrow$

[3]

- (d) Suggest reasonable syntheses for
 - (i) Cr(η⁶-C₆H₆)(CO)₃ starting with CrCl₃, CO, Al, and C₆H₆.
 - (ii) H₃C-Re(CO)₅ using Re₂O₇, CO, CH₃I and Na as the primary starting materials. [10]
- (e) Discuss each of the following observations:
 - (i) The symmetric CO stretching frequencies in [V(CO)₆], [Cr(CO)₆] and [Mn(CO)₆]⁺ are 1858, 2000 and 2095 cm⁻¹ respectively.
 - (ii) When CO becomes coordinated to BH₃ its stretching frequency increases, but when CO becomes coordinated to Ni(CO)₃ its stretching frequency decreases.

[6]

QUESTION TWO

synthesis of hexamethyldisiloxane.	[6]
(b) Based on isolobal analogies, choose the group that might replace the underlined in	e group
(i) Co ₃ (CO) ₉ <u>CH</u> OCH ₃ , N(CH ₃) ₂ , or SiCH ₃ (ii) (OC) ₅ Mn <u>Mn(CO)₅</u> I, CH ₂ , or CCH ₃	[4]
 (c) Use Wade's rules to predict the structures of the following: (i) [Fe₄C(CO)₁₂]²⁻ 	
(ii) Os ₇ (CO) ₂₁	[4]
 (d) Discuss/comment on the following: (i) Sources of carbon in carbido-containing clusters. (ii) Encapsulated carbon atoms in larger metal clusters such as Ru₆C(CO) relatively unreactive and it is the smaller clusters such as Fe₄C(CO)₁₃ thave shown the greatest chemical activity. 	
(d) Consider the following species: (i) Mn(CO) ₅ (ii) [Fe(CO) ₃] ⁻ (iii) Fe ₅ C(CO) ₁₅ . With which of these species are [Fe ₅ C(CO) ₁₄] ²⁻ , Co(CO) ₃ and isoelectronic so far as valence electrons are concerned?	Re(CO) ₅ [3]
QUESTION THREE	
(a) What is the "lanthanide contraction"? What are its consequences on the che later elements?	emistry of [5]
(b) Mention the methods used to separate the lanthanide elements from ea Explain in detail the most important and widely used method.	
(c) Contrast the electronic spectra of the lanthanide and transition metal ions. the lanthanide ion give rise to very sharp bands unlike the broad bands in the of the 3d elements?	-
(d) What is the structure of the redox center of HiPIP and of the 4-Fe Fer	redoxins? [4]
 (e) (i) Use Hund's rules to derive the ground state term of Pr³⁺ ion. (ii) Hence determine the magnetic moment, μ. 	[5]

QUESTION FOUR

- (a) Do the equilibrium positions of the following reactions lie to the left or the right?
 - $Hb + Hb(O_2)_4 \leftrightarrows 2Hb(O_2)_2$
 - $Hb(O_2)_4 + 4Mb \leftrightarrows Hb + 4Mb(O_2)$ (ii) Use figure 1 below to explain your reasoning.
 - (iii) Does your answer in (ii) above depend on the partial pressure of O₂? [6]

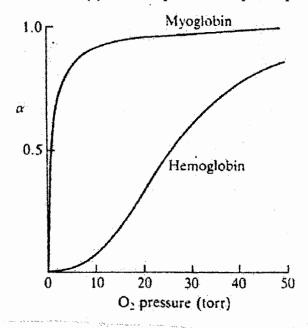


Figure 1: The oxygen saturation curves for Myoglobin (Mb) and Hemoglobin (Hb) showing the fractional oxygen saturation α as a function of the oxygen partial pressure at pH 7.2

- [2] (b) What role does zinc ion play in the action of carboxypeptidase?
- What is a cobaloxime and of what interest are cobaloximes? [2] (c) (i) (ii) List the ways in which the cobaloximes resemble cobalamin.
 - [7]
- Give an example of a pseudohalogen and two properties to show why it is referred (d) to as a pseudohalogen?
- Name one cationic, one neutral, and one anionic interhalogen compound. (e) (i)
 - In those interhalogen compounds consisting of three or more atoms, state (ii) the rule that predicts which atom will be the central atom.

QUESTION FIVE

(a) M is a First Transition Series element. It forms a carbonyl F of empiri M(CO) ₅ which reacts with sodium amalgam in tetrahydrofuran to give a Treatment of G with 3-chloro-1-propene gives a compound H of molecu C ₈ H ₅ O ₅ M. The infrared spectrum of H shows carbonyl stretching ban 2110 and 2004 cm ⁻¹ . On heating H to 100 °C one mole of carbon n	solution G. lar formula ds between											
eliminated to give I, $C_7H_5O_4M$ [$v_{(CO)}$ between 2110 and 1950 cm ⁻¹].												
(i) Identify the metal M.												
(ii) Propose and draw structures for the compounds F, H and I.	[1] [3]											
(iii) Give the species present in solution G.	[1]											
(iv) Discuss the bonding of the organic ligand to M in compound I.	[2]											
 (b) Explain, with necessary diagrams the bonding in ethylene, C₂H₄, to transition atoms with emphasis on the σ-donor and π-acceptor functions of the ligand (c) Account for the observation that Iodine, I₂, is almost insoluble in water but soluble in an aqueous solution of KI. 	[5]											
(d) Predict the structures of the following compounds:												
(i) IF_7 (ii) ICl_2^- (iii) ICl_2^+	[9]											
 (e) Predict the product(s) of the following reactions: (i) Cl₂ + ClF₃ → (ii) BrF₅ + F₂ → 	[2]											

[6]

QUESTION SIX

- (a) Use the Arrhenius, Brønsted-Lowry, Lewis, and Solvent-System concepts with relevant equations to explain why NH₃ is a base in aqueous solution. [8]
- (b) Describe the three classes of aprotic solvents, mentioning examples of each.
- (c) Addition of PPh3 to a solution of Wilkinson's catalyst, RhCl(PPh3)3, reduces the turnover frequency for the hydrogenation of propylene. Give a plausible explanation [3] for this observation.
- (d) (i) Write balanced reaction equations in each of the following processes:
 - (1) The Monsanto Acetic Acid process
 - (2) The Wacker process
 - (ii) Choose one of the above processes, and outline the main steps in the possible [8] mechanism.

PERIODIC TABLE OF ELEMENTS

*	ř			7		6			U)			4			ယ			2				PERIODS	PERIODS		
**Actinide Series	*Lanthanide Series		87	4	227	ć C	132.91	37	Rb	85.468	19	×	39.098	11	Na	22.990	ы	Ľ	6.941	- ;	H .00	十	1		
e Series	de Series		88	Ra	226 03	<u>Б</u> 8	137.33	38	Sr	87.62	20	က္	40.078	12	Mg	24.305	4	Be	9.012			ПΑ	2		
		·	89	**Ac	(227)	7 La	138.91	39	×	88.906	21	Š	44.956	-								шв	3		
232.04 Th 90	% ర్హ	140.12	104	R.	(196)	3 🖽	178.49	40	Zr	91.224	22	1	47.88	-								IVB	4		
231.04 Pa 91	Pr	140.91	105	Ha	(262)	19	180.95	41	Z	92.906	23	<	50.942									VΒ	5		
238.03 U 92	8 Z	144.24	106	Unh	(263)	3 ₹	183.85	42	Mo	95.94	24	Ç	51.996	1	TRAN							VIB	6		
237.05 Np 93	Pm 61	(145)	107	Uns	(262)	Xe	186.21	43	Tc	98.907	25	Mn	54.938		TRANSITION ELEMENTS							VIIB	7		
(244) Pu 94	Sm 62	150.36	108	Uno	(265)	Z CS	190.2	44	Ru	101.07	26	Fe	55.847		ELEM								8	G	
(243) Am 95	63	151.96	109	Une	(266)	3 1	192.22	45	Rh	102.91	27	င္ပ	58.933		EZIS							VIIIB	9	GROUPS	
(247) Cm 96	<u>R</u> 2	157.25	110	Uun	(267)	7.	195.08	45	Pd	106.42	28	Z	58.69										10		
(247) Bk 97	6 T	158.93				Au	196.97	47	Ag	107.87	29	Ç.	63.546				Atomic No	Symbol	Atomic mass			⊞	11		
% Cf (251)	8 D	162.50			00	90	200.59	48	Cd	112.41	30	Zn	65.39				ic No.	ıbol -	c mass			IB	12		
(252) Es 99	Ho 67	164.93			01	°1	204.38	49	In	114.82	31	Ga	69.723	13	A	26.982	->5	E	₩0.811			ША	13		
(257) Fm 100	68 Er	167.26			70	3 5	207.2	50	Sn	118.71	32	ଦୁ	72.61	14	Si	28,086	6	C	12.011			IVA	14		
(258) Md 101	Tm 69	168.93			9	3 5	208.98	51	Sb	121.75	. 33	As	74.922	15	٦	30.974	7	Z	14.007			VA	15		
(259) No 102	Yb	173.04			9	° 7°	(209)	52	Te	127.60	34	Se	78.96	16	S	32.06	∞	0	15.999			VIA	16		
(260) Lr 103	Lu 71	174.97			9	\$ A	(210)	53	H	126.90	35	Br	79.904	17	Ω	35.453	9	ᅻ	18.998			VIIA	17		
					8	8 2	(222)	54	Xe	131.29	36	X.	83.80	18	Ar	39.948	10	Ze	20.180	2	He	VIIIA	18		

() indicates the mass number of the isotope with the longest half-life.