UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2007

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A list of integrals, a data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25 marks)

a. Show that the average distance of an electron from the nucleus in the ground state of a hydrogen atom is $\langle r \rangle = \frac{3a_0}{2}$. The ground state wavefunction is:

$$\psi_{1s} = \frac{1}{\sqrt{\pi a_0^3}} e^{-r/a_0}$$
 [5]

- b. Describe and account for the variation of first ionization energies along period two of the periodic table. [6]
- c. The electron configuration of one of the excited states of calcium is [Ar]3d¹4s¹.
 - (i) Derive the term symbol for the ground state configuration of Ca. [3]
 - (ii) Derive the term symbols for this excited state. [3]
 - (iii) Discuss the possibility of electronic transitions between the ground state and this excited state. [2]
- d. Explain the origin of spin-orbit coupling and how it affects the appearance of a spectrum. [6]

Question 2(25marks)

- a. Describe the physical origin of quantization energy for a particle confined to moving inside a one-dimensional box. [5]
- b. The normalized wavefunction of a particle in a one-dimensional box of length L

is:
$$\psi = \sqrt{\frac{2}{L}} Sin\left(\frac{n\pi x}{L}\right)$$
, where n = 1, 2, 3,

(i) Show that ψ is an eigenfunction of the operator below and give the eigenvalue.

$$\hat{H} = -\frac{h^2}{8\pi^2 m} \frac{d^2}{dx^2}$$
 [5]

- (ii) Find the average value of the coordinate x when n = 1. [5]
- (iii) Find the average value of the linear momentum p_x when n = 1 [5]
- (iv) What is the probability of finding the particle in the middle third of the box? [5]

Question 3 (25 marks)

What is the Zeeman effect? [2] (i) How many lines appear in the Zeeman splitting of the n = 3, l = 2 level of (ii) the hydrogen atom? Calculate the strength of a magnetic field B necessary to produce a (iii) Zeeman splitting of 10 cm⁻¹ in the l=1 state of the hydrogen atom. [3] b. Give the valence bond description of the bonding in ammonia, NH₃. [4] Consider the ions NO and C₂⁺: c. Draw the molecular orbital energy level for each species. [4] Write down the ground state electron configuration and give the (ii) multiplicity of the ground states of these ions. [3] (iii) Which ion should have the greater bond dissociation energy? [1] (iv) Which ion should have the longer bond length? [1] The ground state term symbol for He_2^+ is $^2\Sigma_{\mu}^+$. Define and/or explain the four d. parts comprising this symbol.

Question 4(25 marks)

- a. The infrared spectrum of HCN shows strong bands at 712.1 cm⁻¹ and 3312.0 cm⁻¹. There is a strong Raman band at 2089.1 cm⁻¹. There are weaker infrared bands at 1412.0 cm⁻¹, 2116.7 cm⁻¹, 2800.3 cm⁻¹, 4004.5 cm⁻¹, 5394 cm⁻¹, and 6521.7 cm⁻¹. Some of the IR bands show PR band contour.
 - (i) Identify these bands as fundamental, overtone or combination bands [6]
 - (ii) Suggest the shape of the molecule [1]
 - (iii) Assign the fundamental frequencies to the vibrational modes. [2]

- b. The Vibrational energy levels of NaI lie at the wavenumbers 142.81, 427.31, 710.31 and 991.81 cm⁻¹.
 - (i) Show that they fit the expression $\varepsilon_v = (v + \frac{1}{2})\overline{v} (v + \frac{1}{2})^2 \chi_e \overline{v}$, v = 0, 1, 2... [6]
 - (ii) Deduce the force constant, zero point energy, and dissociation energy of the molecule. (Atomic masses; Na is 22.99 u and I is 126.90 u) [10]

Question 5 (25 marks)

- a. What is the wavelength of an electron moving in a potential difference of 2000 V? How fast (or rather how slow) must a 0.01 kg soccer ball travel to have the same de Broglie wavelength as a 2 000 V electron? ($1eV = 1.602 \times 10^{-19} \text{ J}$. [5]
- b. In an experiment, the position of an electron can be measured with an accuracy of ±0.005 nm.
 - (i) What will be the accuracy in measuring the momentum of the electron? [3]
 - (ii) What will be the accuracy in measuring the speed of the electron? [3]
- c. Consider the function e^{-ax}.
 - (i) Is this function an eigenfunction of p_x^2 ? If it is, what is the eigenvalue? [3]
 - (ii) Is this function an acceptable function when x varies from $-\infty$ to $+\infty$? Explain [2]
 - (iii) What conditions should be imposed on the constant a so that it is an acceptable wavefunction in the range x = 0 to $x = +\infty$ [1]
- d. Find the commutator of the operators $\hat{A} = x \frac{d}{dx}$ and $\hat{B} = x^2 \frac{d^2}{dx^2}$. [8]

Question 6 (25 marks)

- a. Give the gross and specific selection rules for pure rotational spectroscopy. [4]
- b. Which of the following molecules show pure rotational spectra?
 H₂ HCl CH₃Cl CH₂Cl₂ H₂O NH₃
 Explain your choices. [6]
- c. The average spacing between adjacent lines in the rotational spectra of ¹H¹⁹F is 41.912 cm⁻¹. Calculate the bond length of ¹H¹⁹F.

 (Atomic masses: ¹H 1.0078 u, ¹⁹F 18.9984) [8]
- d. Assuming the bond length is independent of isotopic substitution; calculate the spacing between adjacent lines in the rotational spectra of ²H¹⁹F.
 (Atomic mass ²H 2.0140 u) [7]

The end

USEFUL INFORMATION IS GIVEN BELOW

$$\int x^n e^{-ax} dx = \frac{n!}{a^{n+1}}$$

$$d\tau = r^2 \sin\theta d\theta d\phi dr$$

$$\int x \sin^2 ax dx = \frac{x^2}{4} - \frac{x \sin 2ax}{4a} - \frac{\cos 2ax}{8a}$$

$$\int_0^\pi x \sin x dx = \frac{\pi^2}{2}$$

$$\int \sin^2 x dx = \frac{x}{2} - \frac{1}{4\pi} \sin 2ax$$

$$\int \sin^2 x dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax$$

$$\int \sin ax \cos ax dx = \frac{1}{2a} \sin^2 ax$$

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	,e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	п	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{ullet}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \mathrm{T^2 J^{-1} m^3}$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_0 = 4\pi \epsilon_0 \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\bullet} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J	1 erg 1 eV/molecule	= ,	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹					
Prefixes	femto pico nano	μ m - c micro milli centi 10 ⁻⁶ 10 ⁻³ 10 ⁻²	deci	kilo mega giga					

PERIODIC TABLE OF ELEMENTS

	18	VIII/	4.003	o II	2	20.180	Ne	01	39.948	Ar	18	83.80	χ	36	131.29	Xc	54	(222)	Rn	98			
	17	VIIA				18.998	Ŀ	6	35.453	ご	11	79.904	Br	35	126.90	-	53	(210)	Αt	85			
	16	۸۱۸				15.999	0	∞	32.06	S	16	78.96	Se	34	127.60	Ţe	52	(203)	Po	84			
	15	۸۸				14.007	z	7	30.974	۵	15	74.922	As	33	121.75	Sb	51	208.98	Bi	83			
	14	IVA				17.011	ບ	9	28.086	Si	14	72.61	Ĝ	32	118.71	Sn	20	207.2	Pb	82			
	13	HIA				118.01	A B	ر 4	26.982	ΨI	13	69.723	Ğ	31	114.82	In	49	204.38	I	81			
	12	118				Atomic mass -	Symbol —	ic No.				65.39	Zu	30	112:41	Cq	48	200.59	Hg	80			
	11	18				Atomi	Syn	Atomic No.				63.546	Cu	29	107.87	Ag	47	196.97	Αu	79			
	10											58.69	ï	28	106.42	Pd	46	195.08	Pt	78	(267)	Unn	110
GROUPS	6	VIIIB								RNTS		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	77	(392)	Une	109
Ö	∞									ON ELEMENTS		55.847	Fe	56	101:07	Ru	44	190.2	Os	76	(265)	Uno	108
	7	VIIB								SITION		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(292)	Uns	107
	9	VIB								TRANSITIO		51.996	ن	24	95.94	Mo	42	183.85	⋧	74	(263)	Unh	901
	5	VB										50.942	>	23	92.906	Νρ	41	180.95	Та	73	(292)	Ha	105
	4	IVB										47.88	Ţ	22	91.224	Zr	40	178.49	Ηť	72	(197)	Rf	104
	3	IIIB										44.956	Sc	21	88.906	>	39	138.91	*La	57	(227)	**Ac	89
	2	YII				9.012	Be	4	24.305	Mg	12	40.078	ű	70	87.62	Sr	38	137.33	Вя	99	226.03	Ra	88
		<u> </u>	1.008		_	6.941	1,1	٣	22.990	Z	=	39.098	¥	61	85.468	Rb	37	132.91	Ĉ	55	223	Fr	87
		PERIODS		_	-		,	4		77	7		٧	۲		٧٢	,		9	•		7	

*Lanthanide Series

**'Actinide Series

				-life.	gest halj	the lon	ope will	fthe isot	umber o	the mass number of the isotope with the longest half-life.	cates th	() ind	
103	102	101	100	66	86	26	96	95		93	92	16	06
Lr	No No	Md	Fm	Es	Ü	Bķ	Cm	Αm	Pu	Np	n	Pa	Th
(260)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)		237.05	238.03	232.04 231.04 238.03	232.04
71	70	69	89	£9 ·	99	. 65	64	63	62	19	09	59	28
Lu	Λp	Tm	Er	Ho	Dy	Tp	рS	Eu	Sm	Pm	Nd	Pr	ပိ
174.97	173.04	168.93	167.26	164.93	162.50	158.93	157.25	151.96	150.36	(145)	144.24	140.12 140.91	140.12