UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2007

TITLE OF PAPER: INTRODUCTORY CHEMISTRY II

COURSE NUMBER: C112

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25marks)

- a) The rate of decrease in N_2H_4 partial pressure in a closed reaction vessel from the reaction $N_2H_4(g) \rightarrow 2$ NH₃(g) is 63 Torr/h. What are the rates of change of NH₃ partial pressure and total pressure in the vessel? [4]
- b) The reaction $ClO_2(aq) + 2 OH(aq) \rightarrow ClO_3(aq) + H_2O(l)$ was studied and the following results were obtained:

Expt	[ClO ₂], M	[OH], M	Rate, M/s
1	0.060	0.030	0.0248
2	0.020	0.030	0.00276
3	0.020	0.090	0.00828

- (i) Determine the rate law for the reaction
- (ii) Calculate the rate constant.
- (iii) Calculate the rate when $[ClO_2] = 0.010 \text{ M}$ and $[OH^-] = 0.025 \text{ M}$. [6]
- c) The gas phase decomposition of SO₂Cl₂,

 $SO_2Cl_2(g) \rightarrow SO_2(g) + Cl_2(g)$, is first order in SO_2Cl_2 . The rate constant for the decomposition at 660 K is 4.5 x 10^{-2} s⁻¹.

- (i) If the initial pressure of SO₂Cl₂ 375 Torr, what will be its partial pressure after 65 s?
- (ii) At what time will the partial pressure of SO₂Cl₂ decline to one-tenth its initial value? [6]
- d) (i) What factors determine whether a collision between two molecules will lead to a chemical reaction?
 - (ii) According to the collision theory, why does temperature affect the value of the rate constant? [4]
- e) The activation energy of a reaction is 65.7 kJ/mol. How many times faster will the reaction occur at 50 °C than at 0 °C? [5]

Question 2 (25marks)

a) Consider the following equilibrium, for which $K_p = 0.0752$ at 480 °C:

$$2 \operatorname{Cl}_2(g) + 2 \operatorname{H}_2O(g) = 4 \operatorname{HCl}(g) + O_2(g)$$

(i) What is the value of K_p for the reaction

$$4 \text{ HCl}(g) + O_2(g) = 2 \text{ Cl}_2(g) + 2 \text{ H}_2O(g)$$
?

(ii) What is the value of K_p for the reaction

$$Cl_2(g) + H_2O(g) = 2 HCl(g) + \frac{1}{2}O_2(g)$$

(iii) What is the value of K_c for the reaction in (ii)?

[7]

- b) For the reaction $I_2(g) + Br_2(g) = 2 IBr(g)$, $K_c = 280$ at 150 °C. Suppose that 0.500 mol IBr in a 1.00 L flask is allowed to reach equilibrium at 150 °C, what are the equilibrium concentrations of IBr, I_2 and Br_2 ? [7]
- c) Consider the equilibrium, $PCl_3(g) + Cl_2(g) \Rightarrow PCl_5(g)$. A gas vessel is charged with a mixture of the three gases which is allowed to equilibrate at 450 K. At equilibrium the partial pressures of the three gases are $P_{PCl_3} = 0.124$ atm, $P_{Cl_2} = 0.157$ atm, and $P_{PCl_3} = 1.30$ atm. What is the value of K_p at this temperature? [5]
- d) For the following reaction, $\Delta H^0 = +2816 \text{ kJ}$:

$$6 \text{ CO}_2(g) + 6 \text{ H}_2\text{O}(l) = \text{C}_6\text{H}_{12}\text{O}_6(s) + 6 \text{ O}_2(g)$$

How is the equilibrium yield of C₆H₁₂O₆ affected by

- (i) increasing the partial pressure of CO₂
- (ii) increasing the temperature
- (iii) removing CO₂
- (iv) decreasing the total pressure
- (v) removing some of the $C_6H_{12}O_6$
- (vi) adding a catalyst?

[6]

Question 3 (25 marks)

- a) Carbon dioxide in the atmosphere dissolves in rainwater to produce carbonic acid (H₂CO₃), causing the pH of clean unpolluted rain to range from about 5.2 to 5.6. What are the ranges of [H⁺], [OH⁻] in the raindrops? [4]
- b) Phenylacetic acid (HC₈H₇O₂) is one of the substances that accumulates in the blood of people with phenylketonuria, an inherited disorder that can cause mental retardation or even death. A 0.085 M solution of HC₈H₇O₂ is found to have a pH of 2.68. Calculate K_a value of this acid. [5]
- c) Calculate the molar concentration of OH ion in a 1.15 M solution of hypobromite ion (BrO) given its K_b is 4.0 x 10⁻⁴. What is the pH of this solution [6]

- d) Predict whether aqueous solutions of the following compounds are acidic, basic, or neutral. In each case write a supporting equation. [5]
 (i) CrBr₃ (ii) LiI (iii) K₃PO₄ (iv) NH₄Cl (v) KHSO₄.
- e) The molar solubility of PbBr₂ at 25 °C is 1.0×10^{-2} mol/L. Calculate its $K_{sp.}$ [5]

Question 4 (25 marks)

- a) Sodium bromide is formed from its elements at 298 K according to the equation $Na(s) + \frac{1}{2}Br_2(1) \Rightarrow NaBr(s)$.
 - (i) Construct a Born-Haber cycle for sodium bromide.
 - (ii) Use the data below and the Born-Haber cycle in (i) to calculate the enthalpy of vaporization of liquid bromine. [10]

Standard enthalpies	ΔH°/kJ mol ⁻¹
ΔH_f^o formation of NaBr(s)	-361
ΔH_{ea}^{o} electron addition to Br(g)	-325
ΔH_{sub}^o sublimation of Na(s)	+107
ΔH_{ion}^o bond dissociation of Br ₂ (g)	+194
ΔH_{ion}^{o} first ionization of Na(g)	+498
ΔH_L^o lattice dissociation of NaBr(s)	+753

b)	Draw Lewis	structures of the f	following species.	Identify those	that do not	obey	the
	octet rule and	explain why they	do not.				
	(i) SO ₃ ² -	(ii) AlH ₃	(iii) SbF5			[9]	

[6]

c) Give the VSEPR model shape of the species in (iii)

Question 5 (25 marks)

- a) Write five methods by which alkyl halides can be converted to alkanes and write equation(s) to illustrate each method. [[7½]
- b) An alkane has seven carbon atoms per molecule. Write the structures of any seven isomers of the alkane and name them. [7]

- c) Write the names of any five fractions that can be obtained from fractional distillation of crude oil and for each fraction give its use. [5]
- d) (i) What is a polymer?
 - (ii) Write the names and formulae of any three polymers and for each polymer named, write the formula of its monomer. [5½]

Question 6 (25 marks)

- a) Write the names of any six classes of organic compounds and for each class write its general molecular formula and its functional group. [9]
 - (b) Define the following terms and illustrate with equation or structure where possible.
 - (i) Substitution reaction
 - (ii) Hydrolysis
 - (iii) Dehalogenation
 - (iv) Inductive effect
 - (v) Markownikoff's rule [10]
- b) Outline by equations only, steps in the conversion of limestone to vinyl chloride. [6]

The end

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		3.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mcl ⁻¹
•		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	5.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	$\mathrm{m_e}$	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	$4\pi\epsilon_{o}$	$1.112 65 \times 10^{-10} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
	•	$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	<i>ge</i>	2.002 32
Bohr radius	$a_o = 4\pi \varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	$1.097\ 37\ X\ 10^7\ m^{-1}$
Standard acceleration		.
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV		_	oules (. 2 X 10 ⁻¹	•	1 erg 1 eV/m	nolecule	e	=	1 X 10 96 485	- ⁷ J kJ mol	-1
Prefix	xes	femto	pico	nano	micro	milli	centi	deci	kilo		G giga 10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIV	4.00.5) ,	70.100	70.100	Sc	0.	39.948	Ar	18	83.80	곳 	36	131.29	Xe	24	(222)	Rn	98			
	17	VIIA			+	×	 [<u>-</u>	6		ご	17	79.904	Br	35	126.90	-	53	(210)	At	85			
	16	۸I۸			000	15.999	0	∞		S	91	78.96	Se	34	127.60	Ţe	52	(208)	Po	84			
	15	۸۸				14.007	z	7	30.974	٦	15	74.922	As	33	121.75	Sb	12	208.98	Bi	83			
	14	IVA				12.011	ت ت	9	28.086	Si	14	72.61	g	32	118.71	Sn	20	207.2	Pb	. 82			
	13	VIII				10.811	e A A	S •	26.982	Al	13	69.723	g	31	114.82	In	49	204.38	Ę	81			
	12	IIB				Atomic mass —	logi	c No.				65.39 .	Zn	30	112.41	Cd	48	200.59	Hg	80			
	11	113			•	Atomi	Symbol	Atomic No.				63.546	Cu	29	107.87	Ag	47	196.97	γn	79			
	10											58.69	ï	28	106.42	Pd	46	195.08	Pt	78	(267)	Uun	0
GROUPS	6	VIIIB								RNTS		58.933	ပိ	27	102.91	Rh	45	192.22	Ir	77	(266)	Une	109
9	8									FIFM	מיתית הי	55.847	Fe	56	101:07	Ru	44	190.2	Os	9/	(265)	Uno	108
	7	VIIB								STNAMA IA NOITINA CIT	101110	54.938	Mn	25	706.86	Tc	43	186.21	Re	75	(262)	Uns	107
	9	VIB								TDAN		51.996	C	24	95.94	Mo	42	183.85	×	74	(263)	Unh	901
	5	VB										50.942	>	23	92.906	NP	41	180.95	Ta	73	(262)	На	105
	4	IVB										47.88	Ë	22	91.224	Zr	40	178.49	JH	72	(261)	Rf	104
	3	IIIB										44.956	S	21	88.906	>	39	138.91	*La	57	(227)	**Ac	89
	2	٧I				9.012	Be	4	24 305	Ma	12	40.078	ٿ	20	87.62	Sr	38	137.33	Ва	99	226.03	Ra	88
	_	<u> </u>	1.008	Π	_	6.941			22 990	ž	=	39.098	×	61	85.468	Rb	37	132.91	ర	55	223	Fr	87
		PERIODS		-			,	7		,	n		· -	r		v	3		٠	> .		7	

Series	
anide	
Lanth	
*	

e Series	
**'Actinid	

12	140 12 140 91 144.24	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
ی	Pr	Z	Pm	Sm	Eu	Сd	Tb	Dy	Ho	Er	Tm	Λp	Lu
58	59	09	19	62	63	64	. 65	99	<i>L</i> 9.	89	69	70	71
2.04	232.04 231.04 238.03	238.03	237.05	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)
ř	Ря		Z	Pu	Am	Cm	Bk	Ç	Es	Fm	Md	No	Lr
06	16	92	93	94	95	96	26	86	66	001	101	102	103
	() indi) indicates the	1 ~	nass number of the isotope with the longest half-life.	The isol	ope with	the lon	gest half	-life.				