UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2007

TITLE OF PAPER: INTRODUCTORY CHEMISTRY I

COURSE NUMBER: C111

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25marks)

- a) The element oxygen has three naturally occurring isotopes with 8, 9, and 10 neutrons in the nucleus.
 - (i) Write the full chemical symbols for these three isotopes.
 - (ii) Describe the similarities and differences between the three kinds of atoms of oxygen. [4]
- b) From the following list of elements -Ar, H, Ga, Al, Ca, Br, Ge, K, O-pick the one that best fits each description; use each element once:

(i) An alkali metal

(ii) A noble gas

(iii) A halogen

(iv) An alkaline earth metal

(v) A metal that forms a 3+ ion

(vi) A non-metal that forms a 2- ion

(vii) A element that resembles aluminium (viii) A metalloid.

viii) A metalloid. [8]

c) Calculate the average molar mass of bromine in a natural sample, which consists of 50.54% ⁷⁹Br (molar mass 78.918 g) and 49.46% ⁸¹Br (molar mass 80.916 g/mol).

[5]

d) Give the correct formula for the following species:

(i) Calcium sulphide

(ii) Bromic acid

(iii) Aluminium nitride

(iv) Potassium hydrogen sulphite

(v) Hypoiodite ion

(vi) Dinitrogen tetraoxide

(vii) Sulphur hexafluoride

(viii) Copper sulphate pentahydrate

[8]

Question 2 (25 marks)

a) Define the term standard molar enthalpy change of formation.

[3]

b) The equation below shows the reaction between ammonia and fluorine;

$$NH_3(g) + 3F_2(g) \rightarrow 3HF(g) + NF_3(g)$$

Use the standard enthalpy change of formation (ΔH_f^o) data in the table below to calculate the enthalpy change for this reaction. [6]

Compound	NH ₃ (g)	HF(g)	NF ₃ (g)
ΔH _f ^o /kJmol ⁻¹	-46	-269	-114

c) From the enthalpies of reaction

$$H_2(g) + F_2(g) \rightarrow 2 HF(g)$$
 $\Delta H = -537 kJ$
 $C(s) + 2 F_2(g) \rightarrow CF_4(g)$ $\Delta H = -680 kJ$
 $2 C(s) + 2 H_2(g) \rightarrow C_2H_4(g) \Delta H = +52.3 kJ$

Calculate ΔH for the reaction of ethene with F_2 :

$$C_2H_4(g) + 6F_2(g) \rightarrow 2CF_4(g) + 4HF(g)$$
 [6]

- d) In a combustion analysis of a 0.152 g sample of the artificial sweetener aspartame, it was found that 0.318 g of carbon dioxide, 0.084 g of water and 0.0145 g of nitrogen were produced.
 - (i) What is the empirical formula of aspartame?
 - (ii) The molar mass of aspartame is 294 g/mol. What is its molecular formula?

[2]

Question 3 (25 marks)

- a) Separate samples of an unknown solution are treated with dilute solutions of HBr, H₂SO₄, and NaOH. A precipitate forms in all three cases. Which of the following cations could the solution contain: K⁺, Pb²⁺, Ba²⁺? Support your answer with appropriate equations.
- b) Which of the following solutions is most basic? 0.5 M NH₃; 0.1 M KOH; 0.1 M Ca(OH)₂. Explain [3]
- c) Which element is oxidized and which is reduced in the following reactions?

(i)
$$Ni(s) + Cl_2(g) \rightarrow NiCl_2(s)$$

(ii) $PbS(s) + 4 H_2O_2(aq) \rightarrow PbSO_4(s) + 4 H_2O(l)$ [4]

- d) A 3.455 g sample of a mixture was analysed for barium ion by adding a small excess of sulphuric acid to an aqueous solution of the sample. The resultant reaction produced a precipitate of Barium sulphate, which was collected by filtration, washed, dried and weighed. If 0.2815 g of the barium sulphate was obtained, what was the mass percentage of barium in the sample?
- e) The following redox reactions are important in the refining of certain elements.

SiCl₄ + H₂(g)
$$\rightarrow$$
 Si(s) + HCl(g)
SnO₂(s) + C(s) \rightarrow Sn(s) + CO₂(g)
V₂O₅(s) + Ca(l) $\xrightarrow{\Delta}$ V(s) + CaO(s)

- (i) Balance the above equations. [3]
- (ii) Name the source compound or ore of the element (in boldface). [3]
- (iii) What is the oxidation state of the element being extracted? [3]

Question 4(25 marks)

a)	(i) Calculate the smallest increment of energy (a quantum) that can be exabsorbed at a wavelength of 438 nm.	mitted or
	(ii) Calculate the energy of a photon of frequency 6.75 x 10 ¹² s ⁻¹ .	
	(iii) What wavelength of radiation has photons of energy 2.87 x 10 ⁻¹⁸ ?	[6]
b)	Use the de Broglie relationship to determine the wavelengths of the following (i) A 10.0 g bullet fired at 250 m/s.	g objects:
	(ii) A neutron moving at 2.5 x 10 ⁶ m/s.	[4]
c)	Which of the following sets of quantum numbers are permissible for an elect atom? For those that are not permissible give a reason. (i) $n=2, l=1, m_l=1, m_s=\frac{1}{2}$ (ii) $n=5, l=3, m_l=4, m_s=\frac{1}{2}$ (iii) $n=2, l=3, m_l=-1, m_s=-\frac{1}{2}$	ron in an
	(iv) $n=1, l=0, m_l=-1, m_s=\frac{1}{2}$	[4]
d)	Write the electron configurations of the following species	
	(i) Se (ii) Ni (iii) Co^{2+} (iv) P^{3-}	[8]
e)	What is the maximum number of electrons that can occupy the following sub (i) 5p (ii) 3s (iii) 5f	shells?
Qu	uestion 5(25 marks)	
a)	Write the symbol for each of the following ions, the formula for the compound the ion would form with oxygen and name the compound (i) A cobalt iom, [Ar]3d ⁶ (ii) A molybdenum ion, [Kr]4d ³ (iii) A thallium ion, [Xe]4f ¹⁴ 5d ¹⁰ 6s ²	ound that
b)	Select the element/ion with (i) Highest first ionization energy Se, S, Te (ii) Smallest radius Cl ⁻ , Br ⁻ , F ⁻ (iii) Lowest second ionization energy Ar, K, Ca (iv) Largest ionic radius Ca ²⁺ , Cl ⁻ , K ⁺ In each give a reason for your choice.	[8]
c)	In terms of electron configurations obtained from the building up principle why the ionization energies of group 16 elements are smaller than those of elements.	
d)	What is a diagonal relationship? Give two examples to illustrate the concept.	[4]

Question 6 (25 marks)

a) Oxygen can be produced by thermal decomposition of mercury(II) oxide:

$$2 \text{ HgO(s)} \xrightarrow{\Delta} 2 \text{Hg(l)} + O_2(g)$$

What volume of oxygen is produced at 50.0 °C and 0.947 atm by the decomposition of 27.0 g HgO? [5]

- b) If 22.0 L of nitrogen gas at STP is heated to 167 °C and compressed to a volume of 7.00 L, what will be the final pressure? [5]
- c) A tank contains 78.0 g N₂ and 42.0 g Ne at a total pressure of 3.75 atm and a temperature of 50.0 °C. Calculate the partial pressure of each gas and the volume of the tank. [5]
- d) What mass of ammonia will exert the same pressure as 12 mg of hydrogen sulphide, H₂S, in the same container under the same conditions? [5]
- e) What is the molar mass of a compound that takes 2.7 times longer to effuse through a porous plug than it did for the same amount of XeF₂ at the same temperature and pressure. [5]

The end

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	С	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	е	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 K 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
-	· · · · · · · · · · · · · · · · · · ·	6.2364 X 10 L Torr K i mol
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	$N_{ m A}$.	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		•
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
•	4πε _ο -	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{o}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		•
Bohr	$\mu_{\rm B}={ m e}\hbar/2{ m m}_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{\rm N} = e\hbar/2m_{\rm o}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	Se .	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_0^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g - '	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	4.184 joules (J) 1.602 2 X 10 ⁻¹⁹ J	1 erg 1 eV/molecule	=	1 X 10 96 485) ⁻⁷ J 5 kJ mol	-1
Prefixes	femto pico nano	μ m c micro milli centi 10 ⁻⁶ 10 ⁻³ 10 ⁻²	deci	kilo	M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIV	4.003	IIc	2	20.180	, Ne	10	39.948	Ar	18	.83.80	Kr	36	131.29	Xc	54	(222)	Rn	98			
	17	VIIA				18.998	드	6	35.453	ご	17	79.904	Br	35	126.90	_	53	(210)	Αt	85			
	16	VIA				15.999	0	8	32.06	S	16	78.96	Se	34	127.60	Ţe	52	(209)	Po	84			
	15	٨٨				14.007	Z	7	30.974	Ь	15	74.922	As	33	121.75	Sb	51	208.98	Bi	. 83			
	14	IVA				12.011	<u>ပ</u>	9	28.086	Si	4	72.61	Ge	32	118.71	Sn	50	207.2	Pb	82			
	13	VIII				10.811	e A	ς ≜	26.982	ΥI	13	69.723	Сa	31	114.82	In	49	204.38	II	81			
	12	IIB				Atomic mass —	Symbol	Atomic No.				65.39	Zn	30	112.41	Cq	48	200.59	Hg	80			
	Ξ	13				Atomi	Syn	Atom				63.546	Cu	29	107.87	Ag	47	196.97	Αn	79			
	01											58.69	ž	28	106.42	Pd	46	195.08	Pt	78	(267)	Uun	01
GROUPS	6	VIIIB								ENTS		58.933	ပိ	27	102.91	Rh Rh	45	192.22	ı	77	(266)	Une	109
G	∞									ON ELEMENTS		55.847	Fe	56	101:07	Ru	44	190.2	S	16	(265)	Ono	108
	7	VIIB								SITION		54.938	Mn	25	98.907	Tc	43	186.21	Re	75	(292)	Uns	107
	9	VIB								TRANSITI		51.996	Ċ	24	95.94	Mo	42	183.85	≱	74	(263)	Unlı	901
	5	VB										50.942	>	23	92.906	S	41	180.95	Та	73	(292)	На	105
	4	IVB										47.88	Ţ	22	91.224	Zr	40	178.49	JH	72	(261)	Rf	104
	3	IIIB										44.956	Sc	21		X					(227)		
	2	≦				9.012	Be	4	24.305	Mg	12	40.078	Ca	70	87.62	Sr	38	137.33	Вя	26	226.03	Ra	88
	1	<u> </u>	1.008	Ξ	-	6.941	ï	E,	22.990	Na	=	39.098	×	61	85.468	Rb	37	132.91	S	55	223	Fr	87
		PERIODS		-	-		,	4		")		4	•		ν.	ì		٠	>		7	·

icrics	
S	
C	
7	
Ξ.	
ਕ	
_	
=	
Ξ	
4	
\rightarrow	
*	

	140.12	140.91	140.12 140.91 144.24 (145)	(145)	l
*Lanthanide Series	ပိ	Pr	ρN	Pm	
	58	59	09	19	
** Actinide Series	232.04	231.04	232.04 231.04 238.03 237.05	237.05	1
	Th	Pa	ם	N	
	06	16	92	93	

Lu 71 71 (260) (260) Lr Lr 103

168.93 Tm 69

164.93 Ho ·67

Sm 62

(259) No 102

(258) Md

(257) Fm 100

(252) Es 99

(251) Cf 98

(247) Bk 97

(247) Cm %

(243) Am 95

(244) Pu 94

92

() indicates the mass number of the isotope with the longest half-life.