UNIVERSITY OF SWAZILAND BACHELOR OF SCIENCE SUPPLEMENTARY EXAMINATION 2006

TITLE OF PAPER

PHYSICAL CHEMISTRY

COURSE CODE

C402

:

:

TIME

3 HOURS

TOTAL MARKS

100 MARKS

INSTRUCTIONS

THERE ARE SIX QUESTIONS

: ANSWER FOUR QUESTIONS ONLY

: EACH QUESTION IS 25 WORTH MARKS

: A PERIODIC TABLE AND DATA SHEETS ARE PROVIDED WITH THIS

EXAMINATION PAPER

: NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF

THE EXAMINATION ROOM

: BEGIN THE ANSWER TO EACH QUESTION

ON A SEPARATE SHEET OF PAPER

: ALL CALCULATIONS/WORKOUT DETAILS

SHOULD BE SUBMITTED WITH YOUR

ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1 [25 Marks]

a) The Maxwell Boltzmann distribution functions of kinetic energy in one dimension and in three dimensions are given by:

$$F(\varepsilon) = 2\pi\sqrt{\varepsilon} \left(\frac{1}{\pi kT}\right)^{3/2} \exp\left(\frac{-\varepsilon}{kT}\right) \text{ and } F(\varepsilon_x) = \left(\frac{1}{\pi kT\varepsilon_x}\right)^{1/2} \exp\left(\frac{-\varepsilon_x}{kT}\right)$$

- i) Derive an expression for the mean kinetic energy between the limits $0 \to \infty$ [5]
- ii) Calculate the mean kinetic energy for N₂ at 298 K. [5]
- c)
- i) Derive an expression for the most probable kinetic energy. [5]
- ii) Calculate the most probable kinetic energy for nitrogen gas at 298 K [5]
- d) Write brief notes on methods of determining mean velocities for gaseous molecules [5]

Question 2 [25 Marks]

- a) Write short notes on any Two the following pairs:
 - i) half life and relaxation time [5]
 - ii) pseudo first order rate constant [5]
 - iii) Stopped flow technique [5] use any diagram and/or equation of your choice to illustrate your answer
- b) The alkaline hydrolysis of ethyl benzoate at various time gave the following results:

t/ sec	0	100 300		400	500	600	700	800
[A]/moles dm ⁻³	0.05	0.0275	0.0225	0.0185	0.0160	0.0148	0.0148	0.0138

Determine:

- i) order of the reaction [5]
- ii) rate constant of the reaction [2]
- iii) half life, $t_{1/2}$. If $t_{1/2}$ is concentration dependent evaluate at 0.05 M [3]
- c) Show that the integrated rate law for the concurrent reaction:

$$A \xrightarrow{k_1} B$$

A
$$\frac{k_2}{}$$
 C

where
$$k_2 \neq k_1$$

is given by:

$$[A]_t = [A]_0 e^{-(k_1 + k_2)t}$$
 [5]

Question 3 [25 Marks]

(a) Write short notes to define the nature and role of enzymes in reaction kinetics. [5]

(b) Briggs-Haldane equation states
$$V_0 = \frac{V_m[s]}{K_m + [s]}$$
 where $V_m = K_2[E]$

(i) Using Briggs - Haldane n derive

$$v_0 = \frac{-V_0}{[S]} K_m + V_m \quad Eodie - Hofstee \quad n \quad [5]$$

(ii) The hydrolysis of N-glutaryl-L-phenylalanine -p – nitroanalide (GPNA) to p-nitro-analine and N-glutaryl-L-phenylalanine is catalysed by α -chymotrypsin

$$[E]_0 = 4.0 \times 10^{-6} M$$

Using Lineweaver-Burk plot determine [15]

- (a) V_{π}
- (b) K_m
- (c) K_2

Question 4 [25 Marks]

a) The rate constant for de-similar molecules as obtained from the Simple Collision Theory for bimolecular reactions states:

$$k_2 = \sigma P L \sqrt{\frac{8kT}{\pi \mu}} \exp\left(\frac{-E_a}{RT}\right)$$

Briefly outline the kinetic arguments made in deriving the above equation. Using Arrhenius equation also explain its significance in reaction kinetics. [10]

$$Z_{AB} = \sigma \bar{c}_{rel} L^2 [A] [B]$$

Useful relations:

and
$$c_{rel} = \sqrt{\frac{8kT}{\pi\mu}}$$

b) The activated complex theory states:

$$k_2 = \frac{kT}{h} exp\left(\frac{\Delta S^{\#}}{R}\right) exp\left(\frac{-\Delta H}{RT}\right)$$

- Define an activated complex and Give a thermodynamic formulation of the activated i) complex theory (ACT). [10]
- ii) Derive an expression for activation energy for a bimolecular gas phase reaction using the ACT. [5]

Question 5 [25 Marks]

Sketch the appropriate viscosity plots showing its change with temperature for both gases a) and liquids. Give an account of the differences between the two plots.

Useful relations:

$$\eta = \frac{1}{3} m \lambda \bar{c} [A]; \eta = C \exp\left(\frac{AE_{vis}}{RT}\right)$$

(b) Viscosity of liquids flowing in a Ostwald viscometer is given by:

$$\eta = \frac{\pi R^4 \Delta P t}{8Vl}$$

- Sketch the Ostwald and Ubbelodhe viscometers. Comment on the use of these viscometers in viscosity measurements. [4]
- The time required for water and methanol to drain were 42.6 s and 64.5 and that their densities are 0.9982 g/ml (water) and 0.789 g/ml (methanol), respectively. The viscosity of methanol is $1.2x10^{-3}$ Pa s. Determine the viscosity of water. [5]
- Given the distribution function for the flow of particles in liquids: $F(x) = \frac{exp\left(-x^2/4Dt\right)}{\sqrt{\pi Dt}}$ b)

$$F(x) = \frac{exp(-x^2/4Dt)}{\sqrt{\pi Dt}}$$

(i) Find expressions for root mean square distance in one dimension

$$\left\langle x^2 \right\rangle^{1/2} = \sqrt{2Dt} \qquad [4]$$

- The diffusion coefficient of a molecule MH_2Cl_2 in octane at 24.8°C is $5x10^{-10}$ m²s⁻¹, estimate the 3-dimensional root mean square displacement, r_{rms}, for the molecule after 2500 seconds.
- Give an account on the use of diffusion coefficents in chemistry [4] (iii)

Question 6 [25 Marks]

a) Distinguish in some detail between physisorption and chemisorption [5]

b) The Langmuir adsorption isotherm for non-dissociative adsorption of single species is given by:

$$\theta = \frac{kP}{l + kP}$$

Outline the kinetic arguments used to derive the adsorption isotherm above [5]

c) An adsorption isotherm for nitrogen adsorbed on a sample of colloidal silica was measured at -196°C and gave the following data:

Vx10 ⁶ / m ³	P/P _o
44	0.008
61	0.067
68	0.125
80	0.250
90	0.333

Where V is the volume adsorbed (corrected to STP) and P_o is the saturated vapour pressure of nitrogen at -196°C.

(i) Verify whether or not these results conform to the BET adsorption isotherm. [5]

(ii) Determine the monolayer volume capacity and the surface area of the sample given that one adsorbed nitrogen molecules occupies 0.162 nm² in a monolayer. [10]

Useful equation:

B.E.T isotherm is given by: $\frac{P}{V(P_o - P)} = \frac{1}{V_m C} + \frac{C - 1}{V_m C} \frac{P}{P_o}$ where P_o is the bulk vapour

pressure, P is the equilibrium vapour pressure, V_m is the monolayer volume capacity and V the total volume of material adsorbed.

C402 EXAMINATION SUPPLEMENTARY INFORMATION

DR J. M. THWALA

3/01/2006

Useful standard integrals:

$$I_n = \int_0^\infty x^n e^{-ax^2} dx$$

Γ	n	0	1	2	3	4
	In	$\frac{1}{2} \left(\frac{\pi}{a} \right)^{1/2}$	<u>1</u> 2a	$\frac{1}{4} \left(\frac{\pi}{a^3} \right)^{1/2}$	$\frac{1}{2a^2}$	$\frac{3}{8} \left(\frac{\pi}{a^5} \right)^{1/2}$

$$i_n = \int_0^\infty x^{\frac{n}{2}} e^{-ax} dx$$

n	1	2	3	4	5
in	$\frac{\left(\pi/a\right)^{1/2}}{2a}$	$\frac{1}{a^2}$	$\frac{3(\pi/a)^{1/2}}{4a^2}$	$\frac{2}{a^3}$	$\frac{15(\pi/a)^{1/2}}{8a^3}$

THE PERIODIC TABLE OF ELEMENTS

18	VIIIA	2 He 4.003	2 %	: 7	8. N. S.	Xe Esta	85 Rm 222	
17	VIIA		- E	-53	38 38 38	6981 	85 At 210	
16	VIA		* O	203	34 Se 78 96	52 Te 127.6	84 Po 210	
15	VA		- Z	4	33 AS 74.92	51 Sb 121.8	83 Bi 208.9	
14	IVA		٥	14 Si 28.09	32 Ge 72.59	50 Sn 118.7	82 Pb 207.2	
13	ША		5 B	13 Al 26.9	31 Ga 69.7	49 In 114.8	81 TI 204.4	
12	IIB				30 Zn 65.37	48 Cd 112.4	80 Hg 200.6	
11	B		\		29 Cu 63.54	47 Ag 107.9	79 Au 196.9	-
10		TALS	METALLOIDS		28 Ni 58.71	46 Pd 106.4	78 Pt 195.1	
6	VIIIB	NON-METALS	METAL		27 Co 58.71	45 Rh 102.9	77 Ir 192.2	109 Une
&		Z			26 Fe 55.85	44 Ru 101.1	76 Os 190.2	108 Uno
7	VIIB			METALS	25 Mn 54.9	43 Tc 98.9	75 Re 186.2	107 Uns
9	VIB			_ ♠	24 Cr 52.01	42 Mo 95.94	74 W 183.8	106 Unh
5	VB				23 V 50.94	41 Nb 91.22	73 Ta 180.9	105 Unp
4	IVB				22 Ti 47.90	40 Zr 91.22	72 Hf 178.5	104 Unq
3	IIIB				21 Sc 44.96	39 Y 88.91	71 Lu 174.9	103 Lr 257
2	IIA	-	Be	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.3	88 Ra 226.0
1	IA	1 H 1 008	3 Li	11 Na 22 99	19 K 39.10	37 Rb 85.47	55 Cs 132.9	87 Fr 223
Group		Period 1	2	3	4	5	9	_

Lanthanides La Ce Pr Nd Pm Sm Eu 138.9 140.1 140.9 144.2 146.9 150.9 151.3 89 90 91 92 93 94 95 Actinides Actinides </th <th>Pm Sm</th> <th>-</th> <th>Co</th> <th>99</th> <th>29</th> <th>89</th> <th>69</th> <th>20</th>	Pm Sm	-	Co	99	29	89	69	20
138.9 140.1 140.9 144.2 146.9 150.9 89 90 91 92 93 94 Ac Th Pa U Np Pu							Tm	Yb
89 90 91 92 93 94 Ac Th Pa U Np Pu	146.9 150.9				_	_	168.9	173.0
Ac Th Pa U Np Pu	93 94	-		_	_	-	101	102
	Np Pu	Am Cm	Bķ	Ç	ES	Fm	Md	Š
239.1	237.1 239.1		_	_	_	-	258.1	255

Numbers below the symbol indicates the atomic masses; and the numbers above the symbol indicates the atomic numbers.

10 ⁻¹ 10 ³ 10 ⁶	nano micro i	p n m m c d k M G	Prefixes:	1Vsm ⁻² =1JCsm ⁻²	$IJ = I Nm$ power: $1W = 1J s^{-1}$ potential: $1V = 1 J C^{-1}$	force: $IN=IJ m^{-1} = Ikgms^{-2} = 10^{5}$ dyne pressure: $IPa=INm^{-2} = 1 \text{Jm}^{-3}$	10	1 cal (thermochemical) = 4.184 J	1 dm = 0.1 m	$IL = 1000 \text{ ml} = 1000 \text{cm}^3 = 1 \text{ dm}^3$	SI-units:		8065.5 cm ⁻¹		1.01325x10 ⁵ Nm ⁻² 4.184 J 1.602 189x10 ⁻¹⁹ J 0.124x10 ⁻³ eV		hc/k=1.438 78x10 ⁻² m K	1mmHg=133.222 N m ⁻²	T/Cm ⁻¹ : 69.61 207.22 347.62 695.13	T/K: 100.15 298.15 500.15 1000.15	$(RT/F)_{298\cdot15K}=0.025693 \text{ V}$	(RT) _{298·15K} =2.4789 kJ/mol		Useful Relations	
Bohr radius	acceleration	Gravitational	Gravitational constant	Nuclear magneton	Bohr magneton	Vacuum permeability	Vacuum permittivity	Neutron mass	Proton mass	Electron mass	Atomis mass unit	Avogadro constant	-		Planck constant			Gas constant	Boltzmann constant	Faraday constant	charge of proton	speed of light		General Data	
ao		100	G	$\mu_{\rm N} = \frac{e}{2m_{\rm P}}$	$\mu_B = e^{i\Omega}/2m$.	H,	$\varepsilon_o = \mu_o^{-1} c^{-2}$	m_n	m _p	m _e	F	L or N _{av}	$\frac{1}{2\pi}$	ב	h			R=Lk	*	F=Le	е	c	-		
5.291 77x10 ⁻¹¹ m		9.80665 ms ⁻²	6.67259x10 ⁻¹¹ Nm ² kg ⁻²	5.05079x10 ⁻²⁷ JT ⁻¹	9.274 02x10 ⁻²⁴ JT ⁻¹	$4\pi \times 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$	8.854 188×10 ⁻¹² J ⁻¹ C ² m ⁻¹	1.674 93×10 ⁻²⁷ kg	1.672 62x10 ⁻²⁷ kg	$9.109\ 39x10^{-31}$ kg	1.660 54x10 ⁻²⁷ kg	$6.022 \ 14 \text{x} 10^{23} \ \text{mol}^{-1}$	1.054 59x10 ⁻³⁴ Js		6.626 18x10 ⁻³⁴ Js		8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹		1.380 66x10 ⁻²³ J K ⁻¹	9.648 46x10 ⁴ C mol ⁻¹	1.602 19x10 ⁻¹⁹ C	2.997 925x10 ⁸ ms ⁻¹			