UNIVERSITY OF SWAZILAND **BACHELOR OF SCIENCE FINAL EXAMINATION 2006**

TITLE OF PAPER

PHYSICAL CHEMISTRY

COURSE CODE

C402

TIME

3 HOURS

TOTAL MARKS

100 MARKS

INSTRUCTIONS

THERE ARE SIX QUESTIONS :

ANSWER FOUR QUESTIONS ONLY

EACH QUESTION IS 25 WORTH MARKS

A PERIODIC TABLE AND DATA SHEETS ARE **PROVIDED** WITH

EXAMINATION PAPER

NO FORM OF ANY PAPER SHOULD BE BROUGHT INTO NOR TAKEN OUT OF

THE EXAMINATION ROOM

BEGIN THE ANSWER TO EACH QUESTION

ON A SEPARATE SHEET OF PAPER

ALL CALCULATIONS/WORKOUT DETAILS SHOULD BE SUBMITTED WITH YOUR

ANSWER SHEET(S)

DO NOT OPEN THIS EXAMINATION PAPER UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

Question 1 [25 Marks]

a) The Maxwell Boltzmann distribution function of velocities in three dimensions x, y and z, between $v \rightarrow v + dv$ is given by:

$$F(v) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(\frac{-mv^2}{2kT}\right)$$

- (i) Derive an equation for the average velocity, $\bar{\nu}$. [5]
- (ii) Find an expression for the most probable velocity, v*. [5]
- b) i) Calculate the number of collisions made by a single N₂ molecule per sec given that the collission diameter is 373 nm. [3]
- ii) What is the total number of collisions made by N_2 if the oven volume is 50.0 cm³ and the vapour pressure of N_2 at 300 °C is 50 torr. [2] useful equations:

$$Z_A = \frac{\sqrt{2\sigma c}p}{kT}; Z_{AA} = \frac{1}{2}z_A \frac{N}{V}; \ \overline{c} = \sqrt{\frac{8RT}{\pi MW(kg/Mol)}}$$

- iii) Calculate the mean free path of N₂ using the parameters for N₂ above [5]
- iv) Calculate the time intervals between collisions [3
- v) Does the gas, N₂, obey the kinetic theory of gases: Verify and give reasons. [2]

<u>Useful equation:</u> $\lambda = \frac{kT}{\sqrt{2}\sigma\rho}$

Question 2 [25]

- a) Briefly explain each of the following:
 - i) the pre-equilibrium approach [5]
 - ii) the steady state approximation [5]

Use any reaction equation of your choice to illustrate your point.

b) Lundeman's mechanism for the dissociation of ozone in the stratosphere $2O_3 \rightarrow 3O_2$ is:

$$O_3$$
 (Ozone) $\xrightarrow{k_1}$ $O_2 + O$ fast $O_3 + O \xrightarrow{k_2}$ O_2 slow

Using the steady state approximation show that the rate law is $v = \frac{k_2 K [O_3]^2}{O_2}$

After making all necessary assumptions where $K=k_1/k_{-1}$. [5]

c) The experimental rate law for the reaction:

$$2N_2O_5(g) \longrightarrow 4NO_2(g) + O_2(g)$$
 is $v = k[N_2O_5]$,

The proposed mechanism for the reaction has the following elementary single step processes:

$$N_2O_5 \longrightarrow \frac{k_1}{k_{-1}}$$
 $NO_2 + NO_3$ (fast)
 $NO_2 + NO_3 \longrightarrow NO + NO_2 + O_2$ (slow)

$$N_2O_5 + NO \xrightarrow{k_3} NO_2 + NO_2$$
 (fast)

Using the pre-equilibrium approach verify whether the proposed mechanism is right. [5]

Thermal decomposition of a compound has been studied using optical absorption at 350 nm. The following data was obtained:

		<00	1000	Γ
t (s)	U	600	1200	œ
A/absorbance	1.50	0.92	0.65	0.40

Given the rate law: $ln \frac{A-A_{\infty}}{A_0-A_{\infty}} = ln \frac{A}{A_0} = -kt$ determine the rate constant 'k'. [5]

Question 3 [25]

The mechanism for enzyme catalysed reactions as proposed by V. Henri (1903) is:

$$E + S \xrightarrow{k_1} [ES] \xrightarrow{k_2} P$$

Using the steady state approximation and the Lineweaver-Burk treatment show a) that Michaelis-Menten equation is:

ten equation is:
$$\frac{1}{V_o} = \frac{K_m}{V_{max}} \frac{1}{S} + \frac{1}{V_{max}}$$

- Briefly explain and define the role of the following in enzyme kinetics: i)

[3]

b) Michaelis constant, K_m

b) The following data refer to an enzyme catalysed reaction:

V _o / 10 ⁻⁵ mol dm ⁻³ s ⁻¹	13	20	29	38
[S]/10 ⁻³ mol dm ⁻³	2.0	4.0	8.0	20

The enzyme concentration is 2.0 g/dm³ and the molecular weight is 50 000 g/mol Calculate:

- (i) Michaelis constant, K_m [3]
- (ii) V_{max} [3]
- iii) The number of substrate molecules converted into product per unit time, when the enzyme is fully saturated with substrate. [4]

Question 4 [50]

a) The rate constant for de-similar molecules as obtained from the Simple Collision Theory for bimolecular reactions states:

$$k_2 = \sigma P L \sqrt{\frac{8kT}{\pi \mu}} \exp\left(\frac{-E_a}{RT}\right)$$

Briefly outline the kinetic arguments made in deriving the above equation. Using Arrhenius equation also explain its significance in reaction kinetics. [5]

Useful relations:
$$Z_{AB} = \sigma \overline{c}_{rel} L^2 [A] [B]$$

$$and \overline{c}_{rel} = \sqrt{\frac{8kT}{\pi \mu}}$$

b) The Arrhenius parameters for some gas-phase reactions are:

	A/M	S^{I}	P
	Experiment	Theory	
$H_2 + C_2H_4 \rightarrow C_2H_6$	1.24×10^6	7.3×10^{11}	-
$K + Br_2 \rightarrow KBr + Br$	1.0×10^{-12}	2.1×10^{11}	4.8

i) Using the Simple Collision theory estimate the P-factor for the hydrogenation of ethane at 628 K. [5]

$$\sigma(H_2) = 0.27 nm^2$$
, $\sigma(C_2 H_4) = 0.64 nm^2$ and $\mu = \frac{m_A m_B}{m_A + m_B}$

- ii) Account for any discrepancies in the results above (including your calculated P-value. [5]
- c) The activated complex theory states:

$$k_2 = \frac{kT}{h} \exp\left(\frac{\Delta S^{\#}}{R}\right) \exp\left(\frac{-\Delta H}{RT}\right)$$

- Define an activated complex and Give a thermodynamic formulation of the activated i) complex theory (ACT). [8]
- Derive an expression for activation energy for a bimolecular gas phase reaction using ii) the ACT. [2]

Question 5 [25]

The Kohlrausch equation for strong electrolytes states:

$$\Lambda_m(c) = \Lambda_m^o - K\sqrt{c}$$

 $\Lambda_m(c) = \Lambda_m^0 - K\sqrt{c}$ and the Ostwald dilution law for weak electrolytes states:

$$K_{eq} = \left(\frac{\left(\frac{\Lambda'_m}{\Lambda'_m}\right)^2}{I - \left(\frac{\Lambda'_m}{\Lambda'_m}\right)}\right) c \text{ where } \Lambda_m^o = \nu_+ \lambda_+^o + \nu_- \lambda_-^o$$

- a) Using diagrams, where necessary, explain in terms of the relaxation effect and the electrophoretic effect, the concentration dependence of molar conductivities shown by strong and weak electrolytes. [4]
- b) Derive Ostwald's dilution law and express it in its linearised form. [3] [Take the fraction dissociated for weak electrolytes as: $\alpha = \frac{\Lambda_m}{\Lambda_m^o}$]
- The following conductivity data are for a weak acid, MH₃CO₂H in aqueous solution at c)

c/10 ⁻² mol L ⁻¹	6.25	3.13	1.56	0.781	0.391	0.195	0.0977
$\Lambda_{\rm m}/{\rm S~cm}^2{\rm mol}^{-1}$	53.1	72.4	96.8	127.7	164	205.8	249.2

and the viscosity of water is given by $\eta_{water} = 1.00 \times 10^{-3} \text{ kgm}^{-1} \text{s}^{-1}$

Determine the

- limiting conductivity, Λ_m^o [2] (i)
- pK_a value [2] (ii)
- the transport numbers of the MH₃CO₂ and H⁺ ions given the limiting conductivity of MH₃CO₂ to be 40.9 S cm² mol⁻¹ [2] mobility of MH₃CO₂ in units of m²S⁻¹V⁻¹ [2] (iii)
- (iv)
- diffusion coefficient of MH₃CO₂ in units of m²S⁻¹ [2] (v)
- hydrodynamic radius of MH₃CO₂ [2] (vi)

<u>Useful equations:</u>

$$\kappa = \left(\frac{1}{R}\right)\frac{1}{A}; \ t_{\pm} = \frac{\lambda_{\pm}}{\lambda_{+} + \lambda_{-}} = \frac{\lambda_{\pm}}{\Lambda_{m}^{o}} = \frac{u_{\pm}}{u_{+} + u_{-}}; \ \Lambda_{m}^{o} = v_{+}\lambda_{+} + v_{-}\lambda_{-}; \ \lambda_{\pm} = zu_{\pm}F, \ t_{+} + t_{-} = 1,$$

$$D = \frac{kT}{6\pi\eta a}$$
 and $D = \frac{ukT}{ze} = \frac{uRT}{zF}$.

d) i) Describe any one method of determining transport numbers. (3)

ii) In a moving boundary experiment on KCl the apparatus consisted of a tube of internal diameter 4.146 mm, and it contained aqueous KCl at concentration of 0.021 mol L⁻¹. A steady current of 18.2 mA was passed, and the boundary advanced as follows:

Δt/s	200
x/mm	64

Find the transport number of K⁺, its mobility, and its ionic conductivity given the limiting conductivity to be 149.9 S cm²mol⁻¹. (3)

Useful information:

 $t=zcVF/I\Delta t$

Question 6 [25 Marks]

a) Distinguish in some detail between physisorption and chemisorption [5]

b) The Langmuir adsorption isotherm for non-dissociative adsorption of single species is given by:

$$\theta = \frac{kP}{1 + kP}$$

Outline the kinetic arguments used to derive the adsorption isotherm for two molecules 'A' and 'B' as given by

$$\theta_A = \frac{K_A P_A}{1 + K_A P_A + K_B P_B}$$
; $\theta_B = \frac{K_B P_B}{1 + K_A P_A + K_B P_B}$ [5]

c) An adsorption isotherm for nitrogen adsorbed on a sample of colloidal silica was measured at -196°C and gave the following data:

$Vx10^6 / m^3$	P/P _o
44	0.008
61	0.067
68	0.125
80	0.250
90	0.333

Where V is the volume adsorbed (corrected to STP) and P_o is the saturated vapour pressure of nitrogen at -196°C.

(i) Verify whether or not these results conform to the BET adsorption isotherm. [5]

(ii) Determine the monolayer volume capacity and the surface area of the sample given that one adsorbed nitrogen molecules occupies 0.162 nm² in a monolayer. [10]

Useful equation:

B.E.T isotherm is given by: $\frac{P}{V(P_O-P)} = \frac{1}{V_mC} + \frac{C-1}{V_mC} \frac{P}{P_O}$ where P_o is the bulk vapour pressure, P_o is the equilibrium vapour pressure, P_o is the monolayer volume capacity and P_o the total volume of material adsorbed.

<u>C402 EXAMINATION SUPPLEMENTARY</u> <u>INFORMATION</u>

DR J. M. THWALA

3/01/2006

Useful standard integrals:

$$I_n = \int_0^\infty x^n e^{-ax^2} dx$$

n	0	1	2	3	4
In	$\frac{1}{2}\left(\frac{\pi}{a}\right)^{1/2}$	$\frac{1}{2a}$	$\frac{1}{4} \left(\frac{\pi}{a^3} \right)^{1/2}$	$\frac{1}{2a^2}$	$\frac{3}{8} \left(\frac{\pi}{a^5} \right)^{1/2}$

$$i_n = \int_0^\infty x^{\frac{n}{2}} e^{-ax} dx$$

n	1	2	3	4	5
i _n	$\frac{(\pi/a)^{1/2}}{2a}$	$\frac{1}{a^2}$	$\frac{3(\pi/a)^{1/2}}{4a^2}$	$\frac{2}{a^3}$	$\frac{15(\pi/a)^{1/2}}{8a^3}$

Heaful Relations	General Data		
Oppina activity and			
(RT) _{298·15K} =2.4789 kJ/mol	speed of light	C	2.997 925x10 ⁸ ms ⁻¹
(RT/F) _{298-15K} =0.025 693 V	charge of proton	е	1.602 19x10 ⁻¹⁹ C
T/K: 100.15 298.15 500.15 1000.15	Faraday constant	F=Le	9.648 46x10 ⁴ C mol ⁻¹
T/Cm ⁻¹ : 69.61 207.22 347.62 695.13	Boltzmann constant	۲	$1.380~66 \mathrm{x} 10^{-23}~\mathrm{J~K}^{-1}$
1mmHg=133.222 N m ⁻²	Gas constant	R=Lk	$8.314 \ 41 \ J \ K^{-1} \ mol^{-1}$
hc/k=1.438 78x10 ⁻² m K			8.205 75x10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
1atm 1 cal 1 eV 1cm ⁻¹			
$1.01325 \times 10^5 \text{ Nm}^{-2}$ 4.184 J 1.602 189×10 ⁻¹⁹ J 0.124×10 ⁻³ eV	Planck constant	Ħ	6.626 18x10 ⁻³⁴ Js
96.485 kJ/mol		h h	
1 bar 8065.5 cm ⁻¹		$\frac{1}{2\pi}$	$1.054 59 \times 10^{-34} \text{ Js}$
	Avogadro constant	${f L}$ or ${f N}_{f av}$	$6.022\ 14 \text{x} 10^{23}\ \text{mol}^{-1}$
SI-units:	Atomis mass unit	u	$1.66054 \mathrm{x} 10^{-27}\mathrm{kg}$
$IL = 1000 \text{ ml} = 1000 \text{cm}^3 = 1 \text{ dm}^3$	Electron mass	m _e	$9.109 \ 39 \mathrm{x} 10^{-31} \mathrm{kg}$
1 dm = 0.1 m	Proton mass	m_p	$1.67262 \text{x} 10^{-27} \text{kg}$
1 cal (thermochemical) = 4.184 J	Neutron mass	m_n	$1.67493 \mathrm{x} 10^{-27}\mathrm{kg}$
dipole moment: 1 Debye = $3.335 64 \times 10^{-30}$ C m	Vacuum permittivity	$\varepsilon_{o} = \mu_{o}^{-1} c^{-2}$	$8.854 \ 188 \times 10^{-12} \ J^{1} \ C^{2} \ m^{-1}$
force: $IN=IJ m^{-1} = Ikgms^{-2} = 10^5$ dyne pressure: $IPa=INm^{-2} = 1 \text{Jm}^{-3}$	Vacuum permeability	μ _o	$4\pi \times 10^{-7} \text{ Js}^2 \text{C}^{-2} \text{ m}^{-1}$
	Bohr magneton	$\mu_B = e^{4D}_{2m}$	$9.274~02 \times 10^{-24} \text{JT}^{-1}$
CONTRACT AT A CO	Nuclear magneton	e	5.05079x10 ⁻²⁷ JT ⁻¹
magnetic flux: 1T=1Vsm ⁻² =1JCsm ⁻² current: 1A=1Cs ⁻¹		~ /2m _p	
Prefixes:	Gravitational constant	G	6.67259x10 ⁻¹¹ Nm ² kg ⁻²
p n m m c d k M G	Gravitational	g	9.80665 ms ⁻²
nano micro milli centi deci	acceleration	***************************************	
	Bohr radius	a	5.291 77x10 ⁻¹¹ m