UNIVERSITY OF SWAZILAND FINAL EXAMINATION 2006

TITLE OF PAPER: PHYSICAL CHEMISTRY

COURSE NUMBER: C302

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

A data sheet and a periodic table are attached

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1(25marks)

- a. A particle is moving in one dimension between x = a and x = b. The potential is such that the particle cannot be outside these limits and that the wavefunction in between is $\psi = \frac{N}{r}$.
 - (i) Find the normalization constant N. [4]
 - (ii) Calculate the average value of x. [4]
 - b. Show whether the following functions are eigenfunctions of the operator $\frac{d}{dx}$? Give the eigenvalue where appropriate.
 - (i) $e^{i\mathbf{k}\mathbf{x}}$ (ii) $\sin \mathbf{k}\mathbf{x}$ (iii) \mathbf{k} (iv) $e^{-k\mathbf{x}^2}$

(k is a constant) [8]

c. For a particle in a one dimensional box of length L, $\psi = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}$, n = 1, 2,... Calculate the probability of finding the particle in the region between $\frac{L}{4}$ and $\frac{3L}{4}$ for n = 1, 2, and 3. [9]

[Useful integrals: $\int \sin^2 ax dx = \frac{x}{2} - \frac{1}{4a} \sin 2ax$, $\int \frac{dx}{x} = \ln x$, $\int \frac{dx}{x^2} = -\frac{1}{x}$]

Question 2 (25 marks)

- a. The hydrogen atom wavefunctions depend on the quantum numbers n. l, m_l.
 Briefly discuss each of these quantum numbers indicating their possible values and their physical significance.
- b. Consider the hydrogenic atom C⁵⁺:
 - (i) Compute its ionization energy in eV. [5]
 - (ii) Compute the wavelength of the first lines in the Lyman and Balmer series for this ion. [4]
- c. Determine the term symbols for (i) $1s^12p^1$ (ii) $2p^13p^1$. [6]
- d. State whether the following transitions are allowed or forbidden in the emission spectrum of helium. In each case give a reason for your answer.
 - (i) $4^{3}P_{2} \rightarrow 2^{3}S_{1}$ (ii) $4^{1}D_{2} \rightarrow 2^{1}S_{0}$ [4]

Question 3 (25 marks)

a .	Consi (i) (ii) (iii) (iv)	der the following species: NCl, NCl ⁺ , and NCl ⁻ . Draw the molecular orbital energy diagram for NCl. [2] Write the valence electron configuration of the three species. [3] Determine the bond order for each species. [3] Determine whether the species is paramagnetic or not; indicate the number of unpaired electrons in each case. [3]
b.	Give a	a brief description of each of the following terms: Vibronic transition (ii) Franck-Condon principle [6]
c . ,	•	is the intensity of d-d transitions in octahedral complexes much weaker hose in tetrahedral complexes? [4]
d.	comp	is the fluorescence spectrum displaced to lower frequencies when ared to the corresponding absorption spectrum? Explain with an priate diagram. [4]
<u>Oue</u>	stion 4 (25 marks)
a.		did the study of heat capacities of metals consolidate Planck's hypothesis nergy is quantized? [8]
b.	(i)	Write down the expression for the energy of a one dimensional
	(ii)	harmonic oscillator, defining all the terms. [4] Assuming that the vibrations of a $^{14}N_2$ molecule are equivalent to those of a harmonic oscillator with force constant $k = 2293.8 \text{ Nm}^{-1}$, what is the zero point energy of vibration of this molecule. (The mass of a ^{14}N atom is 14.0041 u). [4]
	(iii)	Calculate the wavelength of a photon needed to excite a transition between neighbouring levels in a nitrogen molecule. [3]
C.	H ato	otation of an ¹ H ¹²⁷ I molecule can be pictured as the orbital motion of an om a distance 160 pm from a stationary I atom. Assume the molecule s only in a plane.
	(i) (ii)	Calculate the energy needed to excite the molecule into rotation. [4] What is the minimum non-zero angular momentum of the molecule?

[2]

Question 5 (25 marks)

- a. The spacing between two adjacent lines in the rotational spectrum of carbon monoxide is 1.15 x 10¹¹ s⁻¹. Calculate
 - (i) The moment of inertia of the CO molecule and

[5]

(ii) The internuclear distance

[3]

The atomic masses of C and O are 12.0000 u and 15.9949 u, respectively

- b. The rotational constant for H³⁵Cl is observed to be 10.5909 cm⁻¹. What are the values of the rotational constant for H³⁷Cl and ²D³⁵Cl? The atomic masses are H: 1.0078 u, D: 2.0140 u, ³⁵Cl: 34.9688 u and ³⁷Cl: 36.9651. [8]
- c. The fundamental and first overtone of ¹⁴N¹⁶O are centered at 1876.06 cm⁻¹ and 3724.20 cm⁻¹, respectively. Evaluate
 - (i) The equilibrium vibration frequency and the anharmonicity constant.

[4]

(ii) The exact zero point energy.

[2]

(iii) The force constant of the molecule.

[3]

The atomic masses of ¹⁴N and ¹⁶O are 14.0031 u and 15.9949 u, respectively.

Question 6 (25 marks)

- a. In an experiment, the position of an electron can be measured with an accuracy of ±0.005 nm.
 - (i) What will be the accuracy in measuring the momentum of the electron? [3]
 - (ii) What will be the accuracy in measuring the speed of the electron? [3]
- b. Indicate which of the following functions are "acceptable" as wavefunctions. If one is not give a reason.
 - (i) w=r
- (ii) $\psi = x^2$ (iii) $\psi = \sin x$
- (iv) $\psi = e^{-x}$

(v)
$$\psi = e^{-ax^2} a > 0$$

(vi)
$$\psi = e^{-\alpha x^2} a < 0$$
.

[6]

- c. Find the commutator of the operators $\hat{A} = x \frac{d}{dx}$ and $\hat{B} = x^2 \frac{d^2}{dx^2}$. [7]
- d. A photon powered spacecraft of mass 10.0 kg emits radiation of wavelength 225 nm with a power of 1.50 kW entirely in the backward direction. To what speed will it have been accelerated after 10.0 years if released into free space?

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	.e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m _e	9.109 39 X 10 ⁻³¹ Kg
proton	m _p	1.672 62 X 10 ⁻²⁷ Kg
neutron .	$\mathbf{m}_{\mathbf{n}}$	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε,	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{\circ}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton		
Bohr	$\mu_B = e\hbar/2m_e$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \epsilon_o^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal = 1 eV =	•	joules (. 2 X 10-1	•	1 erg 1 eV/n	nolecul	e		1 X 10 96 485	o ⁷ J SkJ mol	-1
Prefixes	femto	p pico 10 ⁻¹²	nano		milli	centi	deci	kilo	M mega 10 ⁶	G giga 10°

PERIODIC TABLE OF ELEMENTS

	18	VIIIA	4.003	He	7	20.180	Ne	10	39.948	Ar	18	83.80	Kr	36	131.29	Xe	54	(222)	R n	98			
	17	VIIA				18.998	드	6	35.453	ፘ	17	79.904	Br	35	126.90	-	53	(210)	At	85			
	16	VIA				15.999	0	∞	32.06	S	16	78.96	Se	34	127.60	Te	52	(503)	Po	84			
	15	VA				14.007	Z	7	30.974	Ъ	15	74.922	As	33	121.75	Sb	51	208.98	Bi	83			
	14	IVA				12.011	ပ	9	28.086	Si	14	72.61	පී	32	118.71	Sn	20	207.2	Pb	82			
	13	IIIA				10.811	B ♠	\$ ▲	26.982	Ψ	13	69.723	ğ	31	114.82	H	49	204.38	F	81			
-	12	B				Atomic mass -	Symbol —	Atomic No				62:39	Zn	30	112.41	2	48	200.59	Hg) 8			
	11	图				Atom	Syr	Atom				63.546	C	29	107.87	Ag	47	196.97	Au	79			
76	10											58.69	Z	78	106.42	Pd	46	195.08	꿃	%	(267)	Unn	110
GROUPS	6	VIIIB	i.							ENTS		58.933	రి	27	102.91	R	45	192.22	占	7	(366)	Une	109
9	∞									N ELEMENTS		55.847	Fe	56	101.07	Rn	44	190.2	Ő	92	(265)	Uno	108
	7	VIIB								TRANSITION		54.938	Mn	25	98.907	Ic	43	186.21	Re	75	(292)	Uns	107
	9	VIB								TRAN		51.996	Ċ	24		Mo	-					Unh	106
	5	ΛB										50.942	>	23	92.906	Q N						Ha	105
	4	IVB										_	Ξ	22	_	Zr	9		H	72	(261)	Z	104
	3	IIIB										44.956	Š	21	88.906	>	39	138.91				**Ac	88
	7	ПА				9.012	Be	4	<u> </u>	Mg	12	7	ర	70		Š			Ва	26	226.03	Ra	88
	-	ΨI	1.008	H	_	6.941	: -	3	22.990	a Z	11	39.098	¥	19	85.468	Rb	37	132.91	ర	55	223	<u>구</u>	87
		PERIODS		-			7			က			4			v			9			^	

*Lanthanide Series	**Actinide Series

				-life.	ongest half-l	~	ope with	f the isoi	umber of the isotope with the	mass 1	cates the	() indi	
103	102	101	100	66	86	26	96	95		93	92	91	8
Ľ	No	Md	Fm	Es	ن	Bķ	Cm	Am	Pu	ď	ם —	Pa	T
(260	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)		237.05	238.03	1 231.04 238.03	232.04
71	20	69	89	29	99	65	64	63		61	09	59	28
ב	ΧP	Tm	Ā	Ho	Ď	T	B		Sm	Pm	PN	Ce Pr Nd	రి
174.9	173.04	168.93	167.26	164.93	162.50	158.93	157.25		150.36	(145)	144.24	140.91	140.12