UNIVERSITY OF SWAZILAND

FINAL EXAMINATION 2006

TITLE OF PAPER:

INTRODUCTORY

INORGANIC

CHEMISTRY

COURSE NUMBER:

C201

TIME ALLOWED:

THREE (3) HOURS

INSTRUCTIONS:

THERE ARE SIX (6) QUESTIONS. ANSWER ANY FOUR (4) QUESTIONS. EACH QUESTION IS WORTH 25

MARKS.

A TABLE OF CONSTANTS AND A PERIODIC TABLE ARE ATTACHED

NON-PROGRAMMABLE ELECTRONIC CALCULATORS MAY BE USED

PLEASE DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GIVEN BY THE CHIEF INVIGILATOR.

QUESTION ONE

(a)		e a short account opelectric emission.	of photoelectric effect clearly ind	licating the properties of [5]
(b)	The l	basic equation for the	he photoelectric effect is:	
	KE =	hv - W, where W	= work function.	
	speed		caesium is 2.14 eV. What is the semitted when the metal is it	0,5
	wave	(i) 200 nm	(ii) 800 nm	[5]
(c)				
	(i)	Give the values shell of an atom	of the quantum numbers for each	h electron in the valence
	(ii)		s of orbitals described by the sets	
(d)			ion falls from the energy level n = alculate the frequency and wavele	
				[5]

QUESTION TWO

(i) Ti³⁺

(e)

Describe the following types of defects that can occur in the solid state. In each case indicate if any electrical conduction is possible and by what mechanism.

(iii) Ca

unpaired electrons of each of the following species:

(ii) Na

Write out the ground-state electronic configurations and predict the number of

[3]

	to it this of the contract of	
(i)	Schottky defects	[6]
(ii)	Frenkel defects	[6]
(iii)	Metal excess defects	[6.5]
(iv)	Metal deficiency defects	[6.5]

QUESTION THREE

(a)

(a)	(i) BF	nine the hybridiz (ii) CO (ii) case predict the	₂ (iii)	OIF_5			ollowing.	[9]
(b)	The re	sonance forms o	f H ₂ are sho	wn belov	v:			
	$H_A^{(1)}H$	$H_{A}^{(2)} \leftrightarrow H_{A}^{(2)}H_{B}$	$^{(1)} \leftrightarrow \mathrm{H_A}^{(1)}$	$^{(2)}$ H _B \leftrightarrow	H _A H _B ((1)(2)		
	P	Q]	R	S			
		down wave func rding to valence			ich of t	he resonance	forms P,	Q, R and [4]
(c)	energy (i) (ii) (iii)	e series of diatalevel diagram of the bond orders the trend in bon the trend in bon	f N ₂ : ad lengths ad energies	N ₂ and	N ₂ de	termine using	g molecula	
	(1V)	magnetic prope	rties					[9]
(d)		molecular orbits on separate ato		alt from o	combina	ation of d _x ² -y	2 and d_x^2 -y	² atomic [3]
QUI	ESTIO	N FOUR						
(a)	The se	cond ionization	energies of	some Per	iod 4 el	lements are:		
	Ca 11.87	Sc Ti 12.80 13.80	V C)		
	Identif trend.	y the orbitals fro	om which io	nization (occurs	in each case	and accour	nt for the
(b)	Consid (i) (ii)	ler the species N higher ionic size higher ionizatio	e.	Select,	, giving	reasons which	ch one has	[2] [2]
(c)	. ,	Slater's rules, c		effective	nuclea	ar charge (Z*	') for the f	
	(i)	the valence elec						[3]
	(ii) (iii)	the valence electron						[3] [3]
(d)	Provid	e explanations for	or the follow	ving:				
()	(i)	Although oxygoxygen forms o	en and sulp	hur are ir		-	-	dic table, [3]
	(ii)	NH ₃ has a large	-	_		2, 2, 2,		[3]

QUESTION FIVE

(a)	(i)	What are the names of the following: Na ₂ O; Na ₂ O ₂ ; NaO ₂ Which of the phase compounds in (a) (i) is no reconstic? Final in	_											
	(ii)	Which of the above compounds in (a) (i) is paramagnetic? Explain	n. [3]											
(b)	Explain the following concepts with relevant examples:													
	(i)	hydrogen bonding.	[2]											
	(ii)	the diagonal relationship of elements.	[5]											
(c)	table water SP ₂ i give an un	ents (P), (Q), (R), (S) and (T) all belong to the same period in the of elements. (P) combines with (Q) to form a gas QP ₂ which to milky. (S) exists as a relatively unreactive diatomic gas, and its constant and combines with compound R ₂ P which dissolves in water to give a basic solution reactive monoatomic gas. A total of 0.100 g of R ₂ P was dissolved the resulting solution required 26.63 ml of 0.2513 M HCl for neutralis	ompound, ith (P) to on. (T) is in water,											
	(i) (ii)	Identify, with reasons, the elements (P), (Q), (R), (S) and (T). [5] Calculate the molar mass of the compound R ₂ P using the given titration data. [5]												
	(iii)	Write the formula of the compound formed between (R) and (S), and write the equation of the reaction between the compound and water. [3]												
	(iv)	· · · · · · · · · · · · · · · · · · ·												
QUI	ESTIO	ON SIX												
(a)	(i) (ii)	Mention ONE use of hydrogen. Give THREE methods of industrial production of hydrogen and C method of laboratory preparation. Write the reaction equation in case.												
	(iii)	Describe the following types of hydrides:	,											
		(1) Ionic hydrides.	[2]											
		(2) Covalent hydrides.	[2]											
		(3) Metallic hydrides.	[2]											
(b)		ite crystalline solid is either LiCl or KCl. Give FOUR tests, with relion equations where necessary, which would help to establish the ideolid.												
(c)		ain the following observations:	[2]											
	(ii)	(i)Beryllium salts are acidic.[2](ii)Aluminium hydroxide is amphoteric.[2]												

PERIODIC TABLE OF ELEMENTS

	7			6			Uī			4			ယ		2				,_		PERIODS																				
87	Ŧ	223	55	Ç	132.91	37	Rb	85.468	19	×	39.098	11	Na	22.990	` 3	Li	6.941	1	H	1.008	AI	_																			
88	Ra	226.03	56	Ba	137.33	38	Sr	87.62	20	Ca	40.078	12	Mg	24.305	4	Be	9.012				IIA	2																			
89	**Ac	(227)	57	*La	138.91	39	×	88.906	21	Sc	44.956										IIIB	ပ																			
104	Rf	(261)	72	Hf	178.49	40	Zr	91.224	22	Ti	47.88						٠				IVB	4																			
105	Ha	(262)	. 73	Ta	180.95	41	7	92.906	23	V	50.942										۷В	5																			
106	Unh	(263)	74	¥	183.85	42	Mo	95.94	24	Cr,	51.996	TRANSITION			TRANSITION			TRANSITION			TRANSITION			TRANSITION ELEMENTS						•			VIB	9							
107	Uns	(262)	75	Re	186.21	43	Tc	98.907	25	Mn	54.938																SITION			SITION			SITION			SITION			SITION		
108	Uno	(265)	76	0s	190.2	44	Ru	101.07	26	Fе	55.847		ELEM									8	G																		
109	Une	(266)	77	Ir	192.22	45	Rh	102.91	27	ද	58.933	ENTS			•						VIIIB	9	GROUPS																		
110	Uun	(267)	78	Pt	195.08	46	Pd	106.42	28	Z.	58.69											10																			
				Au	196.97	47	Ag	107.87	29	Cu	63.546				Atomic No.	Syn	Atomi			IB	11																				
			80	Hg	200.59	48	Cd	112.41	30	Zn	65.39				ic No.	Symbol	c mass 🗕]	. •		IIB	12																			
			81	<u>11</u>	204.38	49	In	114.82	31	Ga	69.723	13	A	26.982	5	▼ Β	10.811	7			IIIA	13																			
				Рb			Sn	118.71	32	ଦୁ	72.61	· 14	Si	28.086	6	C	12.011				IVA	14																			
		*	83	Bi	208.98	51	Зb	121.75	33	As	74.922	15	Þ	30.974	7	Z	14.007				٧V	15																			
			84	Po	(209)	52	Te ·	127.60	34	Se	78.96	16	S	32.06	ઝ	0	15.999				VIA	16	_																		
			85	At	(210)	53	Ι	126.90	35	Br	79.904	17	Ω	35.453	9	দ্য	18.998				VIIA	17																			
			86	Rn	(222)	54	Xe	131.29	36	X	83.80	18	Ar	39.948	10	Ne	20.180	· 2	He	4.003	VIIIA	18																			

*Lanthanide Series

144.24 **Nd** 60

150.36 **Sm** 62

151.96 E**u** 63

157.25 **Gd** 64

158.93 **Tb** 65

162.50 **Dy** 66

164.93 **Ho** 67

167.26 **Er** 68

168.93 **Tm** 69

173.04 **Yb** 70

**Actinide Series

232.04 **Th** 90

238.03 U 92

(244) **Pu** 94

(243) **Am** 95

(247) **Cm** 96

(247) **Bk** 97

(251) Cf 98

(252) Es 99

(257) **Fm** 100

(258) **Md** 101

(259) **No** 102

(260) **Lr** 103

() indicates the mass number of the isotope with the longest half-life.

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N_A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	и	1.660 54 X 10 ⁻²⁷ Kg
Mass		
electron	m_e	9.109 39 X 10 ⁻³¹ Kg
proton	m_p	1.672 62 X 10 ⁻²⁷ Kg
neutron	m_n	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_o = 1/c^2 \mu_o$	$8.854\ 19\ X\ 10^{-12}\ J^{-1}\ C^2\ m^{-1}$
	$4\pi\varepsilon_{o}$	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_o	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
· · ·		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ C}^{-2} \text{ m}^3$
Magneton		
Bohr	$\mu_B = e \hbar/2m_e$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_N = e\hbar/2m_p$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	g_e	2.002 32
Bohr radius	$a_o = 4\pi\varepsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_0 e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{\infty} = m_e e^4 / 8h^3 c \varepsilon_0^2$	1.097 37 X 10 ⁷ m ⁻¹
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal 1 eV			4.184 1.602	joules (2 X 10 ⁻	J) ¹⁹ J	1 erg 1 eV/1	nolecul	e	1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹ 23.061 kcal mol ⁻¹		
f femto 10 ⁻¹⁵	p pico 10 ⁻¹²	n nano 10 ⁻⁹	μ micro 10 ⁻⁶	m milli 10 ⁻³	centi	deci	k kilo 10 ³	M mega 10 ⁶	G giga 10 ⁹	Prefixes	

 $\begin{array}{l} \textbf{Spectrochemical Series} \\ \Gamma < Br^{-} < S^{2-} < Cl^{-} < NO_{3}^{-} < F^{-} < OH^{-} < EtOH < C_{2}O_{4}^{2-} < H_{2}O < EDTA < (NH_{3}, \, py) < \\ en < dipy < NO_{2}^{-} < CN^{-} < CO \end{array}$