UNIVERSITY OF SWAZILAND SUPPLEMENTARY EXAMINATION 2006

TITLE OF PAPER: INTRODUCTORY CHEMISTRY

COURSE NUMBER: C101

TIME:

THREE (3) HOURS

INSTRUCTIONS:

There are six questions. Each question is worth 25 marks. Answer any four questions.

Non-programmable electronic calculators may be used.

DO NOT OPEN THIS PAPER UNTIL PERMISSION TO DO SO HAS BEEN GRANTED BY THE CHIEF INVIGILATOR.

Question 1 (25marks)

- a. An apparatus consists of a 4.0 L flask containing nitrogen gas at 25°C and 803 kPa, joined to a 10.0 L flask containing argon gas at 25 °C and 47.2 kPa. The stopcock on the connecting tube is opened and the gases mix.
 - (i) What is the partial pressure of each gas in the combined volume of the two flasks after mixing?
 - (ii) What is the total pressure of the gas mixture? [5]
- b. Calculate the mass of ammonium nitrate that should be heated to obtain 100. mL of dinitrogen oxide, N₂O, at 1.00 atm and 298 K in the reaction NH₄NO₃(s) → N₂O(g) + 2H₂O(g). [5]
- c. Calculate the standard enthalpy of formation of $PCl_5(s)$ from the the enthalpy of formation of $PCl_3(l)$ (-319.7 kJ/mol) and $PCl_3(l) + Cl_2(g) \rightarrow PCl_5(s)$ $\Delta H^{\circ} = -124 \text{ kJ}$ [3]
- d. Calculate the standard reaction enthalpy of of the reduction of iron(II) oxide, a step in the production of iron, $FeO(s) + CO(g) \rightarrow Fe(s) + CO_2(g)$, given the following thermochemical equations:

$$3 \text{ Fe}_2\text{O}_3(s) + \text{CO}(g) \rightarrow 2 \text{ Fe}_3\text{O}_4(s) + \text{CO}_2(g)$$
 $\Delta \text{H}^\circ = -47.2 \text{ kJ}$
 $\text{Fe}_2\text{O}_3(s) + 3 \text{ CO}(g) \rightarrow 2 \text{ Fe}(s) + 3 \text{ CO}_2(g)$ $\Delta \text{H}^\circ = -24.7 \text{ kJ}$
 $\text{Fe}_3\text{O}_4(s) + \text{CO}(g) \rightarrow 3 \text{ FeO}(s) + \text{CO}_2(g)$ $\Delta \text{H}^\circ = +35.9 \text{ kJ}$ [5]

e. Calculate the heat evolved from a mixture of 13.4 L of sulphur dioxide at 1.00 atm and 273 K and 15.0 g oxygen in the reaction $2 SO_2(g) + O_2(g) \rightarrow 2 SO_3(g)$ $\Delta H^{\circ} = -198 \text{ kJ}.$ [5]

Question 2 (25marks)

- a. Consider the following elements: potassium, sulphur, and fluorine.
 - (i) Write the ground state electron configuration of each element
 - (ii) Use an appropriate pair of the above elements and their Lewis symbols to illustrate covalent bond formation.
 - (iii) Use an appropriate pair of the above elements and their Lewis symbols to illustrate ionic bond formation. [7]
- b. Consider the following molecules: BF₃ and ClF₃
 - (i) Write the Lewis structure of each.
 - (ii) Predict the shape of the molecule using VSEPR model.
 - (iii) Predict, giving reasons, which molecule has the higher boiling point.

[10]

- Explain why the lattice enthalpy of MgO (3850 kJ/mol) is greater than that of MgS (3406 kJ/mol)
 [4]
- d. Arrange the cations K⁺, Mg²⁺, Al³⁺, Cs⁺ in order of increasing polarizing power. Explain the reasons for your arrangement. [4]

Question 3 (25marks)

a. Let the equilibrium constants for the reactions

$$2 H_2O(g) = 2 H_2(g) + O_2(g)$$
 and

$$2 CO_2(g) = 2CO(g) + O_2(g)$$

be K_{p1} and K_{p2} , respectively. Show that the equilibrium constant for the reaction $CO_2(g) + H_2(g) = H_2O(g) + CO(g)$ is $K_{p3} = (K_{p2}/K_{p1})^{1/2}$, and evaluate it at 1565 K, at which temperature $K_{p1} = 1.6 \times 10^{-11}$ and $K_{p2} = 1.3 \times 10^{-10}$. [5]

- b. A mixture of 0.0560 mol O_2 and 0.0200 mol N_2O is placed in a 1.00 L reaction vessel at 25 °C. When the reaction 2 $N_2O(g) + O_2(g) = 4 NO_2(g)$ is at equilibrium, 0.0200 mol NO_2 is present.
 - (iii) What are the equilibrium concentrations of N₂O and O₂
 - (iv) What is the value of K_c at this temperature.

[5]

c. The following kinetic data were obtained for the reaction $A(g) + 2 B(g) \rightarrow Product$:

	Initial co	ncentration, mol/L	Initial rate,					
Experiment	[A] ₀	[B] ₀	Mol L ⁻¹ s ⁻¹					
1	0.60	0.30	12.6					
2	0.20	0.30	1.4					
3	0.60	0.10	4.2					
4	0.17	0.25	?					

- (i) What is the order with respect to each reactant, and the overall order?
- (ii) Write the rate law for the reaction.
- (iii) Determine the value of the rate constant
- (iv) Predict the reaction rate for experiment 4.

[8]

- d. Dinitrogen pentoxide, N_2O_5 , decomposes by first order kinetic with a rate constant 3.7 x 10^{-5} s⁻¹ at 298 K.
 - (i) What is the half life in hours for the decomposition of N_2O_5 at 298 K?
 - (ii) If the initial concentration of N₂O₅ is 2.33 x 10⁻² mol/L, what will be the concentration remaining after 2.0 h?
 - (iii) How much time will elapse before the N₂O₅ concentration decreases from 23.3 mmol/L to 17.6 mmol/L? [7]

Question 4 (25marks)

- a. Calculate the pH and pOH of a solution containing 14.0 mg NaOH in 250.0 mL of solution. $(K_w = 1.00 \times 10^{-14})$ [4]
- b. When the pH of a 0.10 M HClO₂(aq) was measured, it was found to be 1.2. What are the values of the K_a and pK_a? [5]

- c. A 100.0 mL buffer solution is 0.15 M $CH_3CO_2H(aq)$ and 0.10 M $NaCH_3CO_2(aq)$. $K_a = 1.8 \times 10^{-5}$ for acetic acid.
 - (i) What is the pH of the buffer solution?
 - (ii) What will be the pH of the solution after the addition of 3.0 mmol NaOH.? [8]
- d. What molar concentration of Ag^+ ions is required for the formation of a precipitate when added to 1.0×10^{-5} M NaCl(aq). What mass of AgNO₃ needs to be added for the onset of precipitation in 100.0 mL of this solution. $K_{sp} = 1.6 \times 10^{-10}$ for AgCl. [8]

Question 5 (25marks)

- . Calculate the wavelength of a hydrogen atom travelling at 10.0 m/s. [4]
- b. Write the ground state electron configuration of the following species:
- (i) Tl^+ (ii) S^{2-} (iii) Mn^{2+} [6] c. Explain why, in a many electron atom, a 3s electron is bound more strongly
- c. Explain why, in a many electron atom, a 3s electron is bound more strongly than a 3p electron. [3]
- d. Describe briefly how you would show the presence of the following elements in an organic compound:
 - (i) Carbon
 - (ii) Hydrogen
 - (iii) Sulphur
 - (iv) Nitrogen
 - (v) Chlorine
 - (vi) Phosphorus

(12)

Question 6 (25marks)

- a. An alkene contains five carbon atoms per molecule. Write the structures and names of all the possible isomers of the alkene. [10]
- b. Name any five types of organic reactions and for each reaction named, describe the reaction and write an equation to illustrate. [10]
- c. Describe briefly a reaction you would perform in a laboratory to differentiate between the following pairs of substances and write equation for any reaction described:
 - (i) Cyclohexane and cyclohexene
 - (ii) Ethene and ethyne

[5]

General data and fundamental constants

Quantity	Symbol	Value
Speed of light	c	2.997 924 58 X 10 ⁸ m s ⁻¹
Elementary charge	.e	1.602 177 X 10 ⁻¹⁹ C
Faraday constant	$F = N_A e$	9.6485 X 10 ⁴ C mol ⁻¹
Boltzmann constant	k	1.380 66 X 10 ⁻²³ J K ⁻¹
Gas constant	$R = N_A k$	8.314 51 J K ⁻¹ mol ⁻¹
		8.205 78 X 10 ⁻² dm ³ atm K ⁻¹ mol ⁻¹
		6.2364 X 10 L Torr K ⁻¹ mol ⁻¹
Planck constant	h	6.626 08 X 10 ⁻³⁴ J s
	$\hbar = h/2\pi$	1.054 57 X 10 ⁻³⁴ J s
Avogadro constant	N _A	6.022 14 X 10 ²³ mol ⁻¹
Atomic mass unit	u	1.660 54 X 10 ⁻²⁷ Kg
Mass		•
electron	m_{ϵ}	9.109 39 X 10 ⁻³¹ Kg
proton	m_{p}	1.672 62 X 10 ⁻²⁷ Kg
neutron .	m,	1.674 93 X 10 ⁻²⁷ Kg
Vacuum permittivity	$\varepsilon_{\rm o} = 1/c^2 \mu_{\rm o}$	8.854 19 X 10 ⁻¹² J ⁻¹ C ² m ⁻¹
	4πε _ο	1.112 65 X 10 ⁻¹⁰ J ⁻¹ C ² m ⁻¹
Vacuum permeability	μ_{ullet}	$4\pi \times 10^{-7} \text{ J s}^2 \text{ C}^{-2} \text{ m}^{-1}$
		$4\pi \times 10^{-7} \text{ T}^2 \text{ J}^{-1} \text{ m}^3$
Magneton	•	
Bohr	$\mu_{\rm B} = e\hbar/2m_{\rm e}$	9.274 02 X 10 ⁻²⁴ J T ⁻¹
nuclear	$\mu_{N} = e\hbar/2m_{p}$	5.050 79 X 10 ⁻²⁷ J T ⁻¹
g value	8e	2.002 32
Bohr radius	$a_o = 4\pi \epsilon_o \hbar/m_e e^2$	5.291 77 X 10 ⁻¹¹ m
Fine-structure constant	$\alpha = \mu_o e^2 c/2h$	7.297 35 X 10 ⁻³
Rydberg constant	$R_{-} = m_e e^4 / 8h^3 c \epsilon_o^2$	$1.097\ 37\ X\ 10^7\ m^{-1}$
Standard acceleration		
of free fall	g	9.806 65 m s ⁻²
Gravitational constant	G	6.672 59 X 10 ⁻¹¹ N m ² Kg ⁻²

Conversion factors

1 cal 1 eV			oules (1 2 X 10-1	•	1 erg 1 eV/n	nolecul	e		1 X 10 ⁻⁷ J 96 485 kJ mol ⁻¹					
Prefi	xes	femto	p pico 10 ⁻¹²	nano	micro	milli	centi	deci	kilo	M mega 10 ⁶				

PERIODIC TABLE OF ELEMENTS

*	Ļ			7		6			UT			4			ယ			2		1		PERIODS		
**Actinide Series	*Lanthanide Series		87	Fr.	333	S S	132.91	37	Rb	85.468	19	×	39.098	=	Z	22.990	ω	Li	6.941	H 1	1.008	IA	г	
e Series	de Serie		88	Ra	336.03	Ba	137.33	38	S.	87.62	20	င္အ	40.078	12	Mg	24.305	4	Ве	9.012			IIA	2	
			89	**Ac	(22)	La Za	138.91	39	۲	88.906	21	Sc	44.956									IIIB	3	
232.04 Th 90	Ce 58	140 12	104	R (7/2	Hf	178.49	4 0	Zr	91.224	22	<u>:</u> :	47.88									IVB	4	
231.04 Pa 91	Pr 59	140 91	105	Ha	(363)	Ta	180.95	41	P	92.906	23	⋖	50.942									VΒ	5	
238.03 U 92	80 Nd	144 24	106	Unh	(263)	₹	183.85	42	Mo	95.94	24	Ç	51.996		TRAN							VIB	6	
237.05 Np 93	Pm 61	(145)	107	Uns	(262)	Re	186.21	43	Tc	98.907	25	Mn	54.938		TRANSITION ELEMENTS							VIIB	7	
(244) Pu 94	Sm 62	150 36	108	Uno	0/8	Š	190.2	44	Ru	101.07	26	Fe	55.847		ELEM								8	G
(243) Am 95	Eu 63	151 96	109	Une	(366)	} !	192.22	45	Rh	102.91	27	င္ပ	58.933		ENTS							VIIIB	9	GROUPS
(247) Cm 96	Gd	157.25	110	Uun	(767)	: T	195.08	46	Pd	106.42	28	Z	58.69										10	
(247) Bk 97	Tb 65	158 93			19	Au	196.97	47	Ag	107.87	29	Cı	63.546				Atomic No.	Symbol	Atomic mass			B	11	
(251) Cf 98	Dy 66	162 50			8	Hg Hg	200.59	48	Cd	112.41	30	Zn	65.39				c No.		mass —			IB	12	
(252) Es 99	H ₀ 67	164 93			10	° 1	204.38	49	In	114.82	31	Ga	69.723	13	A	26.982	5	→ B	10.811			IIIA	13	
(257) Fm 100	Er 68	167 26			70	3 P	207.2	50	Sn	118.71	32	£	72.61	14	Si	28.086	6	C	12.011			IVA	14	
(258) Md 101	Tm 69	168 93			9	3 <u>B</u>	208.98	51	Sb	121.75	33	As	74.922	15	P	30.974	7	Z	14.007			VA	15	
(259) No 102	Yb	173 04			04	Po	(209)	52	Te	127.60	34	Se	78.96	16	Ø	32.06	8	0	15.999			VIA	16	
(260) Lr 103	Lu 71	174 97			9	e At	(210)	53	-	126.90	35	Br	79.904	17	Ω	35.453	9	뉳	18.998			VIIA	17	
					8	° Zi	(222)	54	Xe	131.29	36	K.	83.80	18	Ar	39.948	10	Ne	20.180	Не	4.003	VIIIA	18	

() indicates the mass number of the isotope with the longest half-life.